

Syntheses, Characterizations, and Coordination Chemistry of the 10-Vertex Phosphadicarbaboranes 6-R-*arachno*-6,8,9-PC₂B₇H₁₁ and 6-R-*arachno*-6,5,7-PC₂B₇H₁₁

Daewon Hong, Scott E. Rathmill, Patrick J. Carroll, and Larry G. Sneddon*

Contribution from the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Received August 7, 2003; E-mail: lsneddon@sas.upenn.edu

Abstract: The 10-vertex phosphadicarbaboranes, 6-R-arachno- $6,8,9-PC_2B_7H_{11}$ (1) (R = Ph 1a or Me 1b) and 6-R-arachno-6,5,7-PC₂B₇H₁₁ (2) (R = Ph 2a or Me 2b) have been synthesized using in situ dehydrohalogenation reactions of RPCl₂ (R = Ph or Me) with the arachno-4,5-C₂B₇H₁₃ and arachno-4,6-C₂B₇H₁₃ carboranes, respectively. X-ray crystallographic determinations in conjunction with DFT/GIAO/ NMR calculations and NMR spectroscopic studies have established that both 1 and 2 have open cage structures based on an icosahedron missing two vertexes. The two isomeric compounds differ in the positions of the carbons and bridging hydrogens on the open face. Studies of the reactions of 2a with BH₃·THF, S₈, and hydrogen peroxide demonstrated that 2a shows strong donor properties yielding the compounds endo-6-H₃B-exo-6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (3), endo-6-S-exo-6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (4), and endo-6-O-exo-6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (5) in which the BH₃, S, and O substitutents are bonded to an electron lone pair localized at the phosphorus endo-position. The reaction of 2a with an excess of S8 results in the loss of a framework boron to produce the unique open-cage compound $\mu_{7,8}$ -{HS(Ph)P}-hypho-7,8-C₂B₆H₁₁ (6). 2a also formed the donor complexes $cis-(\eta^1-[6-Ph-arachno-6,5,7-PC_2B_7H_{11}])_2PtBr_2$ (7) and $trans-(\eta^1-(\eta^1-1))_2PtBr_2$ (7) and $trans-(\eta^1-1)_2PtBr_2$ (7) and $[6-Ph-arachno-6,5,7-PC_2B_7H_{11}]_2PdBr_2$ (8) in which the metal fragment is bonded in an η^1 -fashion at the phosphorus endo-position. In these complexes, 2a is functioning as a two-electron sigma donor to the metals and can thus be considered as an analogue of the PR₃ ligands in the classical *cis*-(PPh₃)₂PtBr₂ and trans-(PPh₃)₂PdBr₂ coordination complexes. Although **1a** did not show the donor properties exhibited by 2a, its dianion 6-Ph-6,8,9-PC₂B₇H₉²⁻ (1a²⁻) readily formed η^4 -coordinated complexes with late transition metals including 8-Ph-7-(Ph₃P)₂-*nido*-7,8,10,11-PtPC₂B₇H₉ (9), 7-Ph-11-(η⁵-C₅H₅)-*nido*-11,7,9,10-CoPC₂B₇H₉ (10), and *commo*-Ni-(7-Ni-8'-Ph-*nido*-8',10',11'-PC₂B₇H₉)(7-Ni-8-Ph-*nido*-8,10,11-PC₂B₇H₉) (11).

Introduction

While a variety of phosphacarbaboranes have been prepared and studied,¹ we have only recently reported the syntheses, structures, and chemical reactivities of the first 10-vertex *arachno*-phosphamonocarbaborane 6-R-*arachno*-6,7-PCB₈H₁₁⁻² These and its conjugate anion 6-R-*arachno*-6,7-PCB₈H₁₁⁻² These studies showed that, in contrast to the properties observed for the previously known phosphacarbaboranes, the 6-R-*arachno*-6,7-PCB₈H₁₁⁻ anion exhibited strong donor properties arising from a lone pair of electrons localized on the phosphorus and, accordingly, forms many compounds, including *endo*-6-L-*exo*-6-Ph-*arachno*-6,7-PCB₈H₁₁⁻ (L = O, S, BH₃), *endo*-6-[CpFe $(CO)_2$]-*exo*-6-Ph-*arachno*-6,7-PCB₈H₁₁ and *exo*-6-[Mn(CO)₅]*endo*-6-Ph-*arachno*-6,7-PCB₈H₁₁, in which the 6-R-*arachno*-6,5,7-PCB₈H₁₁⁻ anion could be considered as an anionic analogue of R₃P.

In this paper, we report the first syntheses and structural characterizations of the 10-vertex phosphadicarbaboranes 6-R-*arachno*-6,8,9-PC₂B₇H₁₁ (1) and 6-R-*arachno*-6,5,7-PC₂B₇H₁₁ (2) along with studies that compare the reactivities and coordination properties of these phosphadicarbaboranes with those of the isoelectronic 6-R-*arachno*-6,7-PCB₈H₁₁⁻ phosphamonocarbaborane anion.³

Experimental Section

All manipulations were carried out using standard high-vacuum or inert-atmosphere techniques as described by Shriver.⁴

Materials. Dicholorophenylphosphine, 1,8-bis(dimethylamino)naphthalene (Proton Sponge, PS), sulfur powder, and HCl·Et₂O (1.0 M Et₂O

For reviews of phosphacarbaboranes, see: (a) Stíbr, B. Collect. Czech. Chem. Commun. 2002, 67, 843–868. (b) Todd, L. J. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 1, pp 543–553. (c) Todd, L. J. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Housecroft, C. E., Eds.; Pergamon Press: New York, 1995; Vol. 1, pp 257–273.

^{(2) (}a) Shedlow, A. M.; Kadlecek, D. E.; Clapper, J. C.; Rathmill, S. E.; Carroll, P. J.; Sneddon, L. G. *J. Am. Chem. Soc.* **2003**, *125*, 200–211. (b) Kadlecek, D. E.; Shedlow, A. M.; Kang, S. O.; Carroll, P. J.; Sneddon, L. G. *J. Am. Chem. Soc.* **2003**, *125*, 212–220.

⁽³⁾ Hong, D.; Rathmill, S. E.; Kadlecek, D. E.; Sneddon, L. G. Inorg. Chem. 2000, 39, 4996–4997.

⁽⁴⁾ Shriver, D. F.; Drezdzon, M. A. Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.

solution) were purchased from Aldrich and used as received. Dichloromethylphosphine, CpCo(CO)₂, (Ph₃P)₂PtCl₂, PtBr₂, and PdBr₂ were purchased from Strem and used as received. Oil dispersed NaH was purchased from Aldrich, washed with dry hexanes under an N₂ atmosphere, and dried under high vacuum prior to use. The 1,2dimethoxyethane (DME), toluene, and dichloromethane were dried by passing through an activated alumina column prior to use. HPLC grade hexanes and chloroform were purchased from Fisher and used as received. The *arachno*-4,5-C₂B₇H₁₃⁵ and *arachno*-4,6-C₂B₇H₁₃⁶ were prepared according to literature procedures.

Physical Measurements. NMR data are presented in Table 1. ¹H NMR spectra at 500.4 MHz, ¹¹B NMR spectra at 160.5 MHz, and ¹³C NMR at 125.8 MHz were obtained on a Bruker AM-500 spectrometer equipped with the appropriate decoupling accessories. ³¹P NMR spectra at 145.8 MHz were obtained on a Bruker AM-360 spectrometer. All ¹¹B chemical shifts are referenced to external BF₃•Et₂O (0.00 ppm), with a negative sign indicating an upfield shift. All ¹H and ¹³C chemical shifts were measured relative to internal residual protons or carbons in the lock solvents and are referenced to Me₄Si (0.00 ppm). All ³¹P chemical shifts are referenced to external 85% H₃PO₄ (0.0 ppm) with a negative sign indicating an upfield shift. Infrared spectra were obtained on a Perkin-Elmer 1430 spectrophotometer. Elemental analyses were performed at the University of Pennsylvania microanalysis facility. Mass spectra were recorded on a Micromass Autospec spectrometer. Melting points were obtained on a standard melting point apparatus and are uncorrected.

6-Ph-arachno-6,8,9-PC₂B₇H₁₁ (1a). A 0.36 g (3.2 mmol) sample of arachno-4,5-C2B7H13 was dissolved in 20 mL of DME under an Ar atmosphere. A 2.05 g (9.6 mmol, 3 equiv) sample of Proton Sponge was then added while the solution was maintained at 0 °C. The mixture was stirred for ~1 h at room temperature. A 0.43 mL (3.2 mmol, 1 equiv) sample of PhPCl₂ was then added via syringe at 0 °C, and the contents were allowed to warm to room temperature. A ¹¹B NMR spectrum taken at this point was consistent with the formation of the 6-Ph-arachno-6,5,10-PC₂B₇H₁₀⁻ anion (vide infra). Acidification with excess HCl+Et₂O (1.0 M, 12 mL) at -78 °C then generated 6-Pharachno-6,8,9-PC₂B₇H₁₁ (1a). The solution was filtered to remove the precipitate in an Ar-filled glovebag. The filtrate was removed to the vacuum line, and the volatiles were evaporated in vacuo. The product was extracted with 30 mL of toluene from the residual materials. After toluene removal, 0.48 g (2.2 mmol, 68%) of solid 1a was obtained. If necessary, the product was purified by flash silica gel chromatography using hexanes/dichloromethane (4:1, v/v) as the eluent. For 1a: mp 93 °C. Anal. Calcd: C, 43.90; H, 7.37. Found: C, 44.37; H, 7.07. HRMS (CI neg) (m/e) calcd for ${}^{12}C_{8}{}^{1}H_{16}{}^{11}B_{7}{}^{31}P$ 220.1650, found 220.1654; IR (NaCl, cm⁻¹) 3040 (m), 2940 (s), 2910 (s), 2860 (m), 2540 (s), 2390 (w), 2310 (w), 1730 (m), 1570 (w), 1460 (m), 1420 (s), 1350 (m), 1260 (m), 1050 (m), 950 (m), 740 (m), 680 (m).

6-Me-arachno-6,8,9-PC₂B₇H₁₁ (1b). A 0.39 g (3.5 mmol) sample of *arachno-*4,5-C₂B₇H₁₃ was dissolved in 15 mL of DME under an Ar atmosphere. Then, 2.22 g (10.4 mmol, 3 equiv) of Proton Sponge was added at 0 °C. The mixture was stirred for ~30 min at room temperature. A 0.31 mL (3.5 mmol, 1 equiv) sample of MePCl₂ was then added via syringe at 0 °C, and the contents were allowed to warm to room temperature. After 13 h, excess HCl•Et₂O (1.0 M, 12 mL) was added at -78 °C. The solution was then filtered to remove the precipitate in an Ar-filled glovebag. The filtrate was removed to the vacuum line, and the volatiles were evaporated in vacuo. The product was extracted with 30 mL of toluene from the residual materials. After toluene removal, 0.27 g (1.7 mmol, 49%) of oily **1b** was obtained. If necessary, the product was re-extracted with toluene or hexanes. For

1b: HRMS (CI neg) (m/e) calcd for ${}^{12}C_{3}{}^{1}H_{14}{}^{11}B_{7}{}^{31}P$ 158.1485, found 158.1481; IR (CH₂Cl₂, NaCl, cm⁻¹) 2900 (w), 2650 (s), 2610 (s), 2550 (s), 2420 (s), 2350 (m), 1470 (m), 1400 (s), 1270 (m), 1100 (m), 1050 (m), 1020 (m), 980 (s), 960 (m), 920 (w), 900 (s), 880 (m).

6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (2a). A 0.161 g (1.4 mmol) sample of arachno-4,6-C2B7H13 was dissolved in 20 mL of DME under an N2 atmosphere. Then, 0.614 g (2.9 mmol) of Proton Sponge was added to the solution at 0 °C. Stirring was continued for 1 h at room temperature, and then 0.19 mL of PhPCl₂ was added dropwise via syringe at 0 °C. Immediately, a white precipitate formed. The mixture was brought to room temperature and stirred for 2 h. The reaction mixture was filtered in the glovebag, resulting in a pale yellow solution. The filtrate was removed to a 250 mL one-piece glass vessel with a sidearm, and the solvent was then carefully removed in vacuo, to give a mixture of white and yellow materials visibly separated inside of the glass vessel. The yellow material was carefully removed using dichloromethane, which gave white solid 2a (0.140 g, 0.64 mmol, 46%). If necessary, the product was re-extracted with toluene or hexanes. For 2a: mp 74 °C. Anal. Calcd for C₈H₁₆B₇P·¹/₈CH₂Cl₂: C, 42.53; H, 7.14. Found: C, 42.51; H, 7.53. HRMS (CI neg) (m/e) calcd for ${}^{12}C_{8}{}^{1}H_{16}{}^{11}B_{7}{}^{31}P$ 220.1641, found 220.1640; IR (CH2Cl2, NaCl, cm-1) 3150 (w, br), 2500 (s), 1450 (w), 1150 (s), 1020 (s).

6-Me-*arachno***-65,7-PC**₂**B**₇**H**₁₁ **(2b).** A 0.45 g (4.0 mmol) sample of *arachno***-**4,6-C₂**B**₇**H**₁₃ was dissolved in 40 mL of THF under an N₂ atmosphere. Then, 1.83 g (8.5 mmol) of Proton Sponge was added to this solution. After the solution was stirred for 1 h at room temperature, 0.40 mL of MePCl₂ was added dropwise via syringe at 0 °C. Immediately, a white precipitate formed. The mixture was brought to room temperature and stirred for 1 h. The crude product was then vacuum distilled at 90 °C for 3 h, to give 0.31 g (2.0 mmol, 50%) of a pale yellow oily **2b.** For **2b**: Anal. Calcd: C, 22.77; H, 8.86. Found: C, 23.44; H, 9.46. LRMS (*m/e*) calcd for ¹²C₃¹H₁₄¹¹B₇³¹P 158, found 158 (seven-boron isotope pattern); IR (NaCl, neat, cm⁻¹) 3050 (m), 2560 (s), 2050 (w), 1500 (w), 1425 (m), 1390 (m), 1280 (m), 1200 (w), 1140 (w), 1050 (s), 970 (m), 920 (s), 880 (m), 850 (s), 810 (m), 780 (m).

Reaction of 6-Ph-*arachno***-6,8,9-PC**₂**B**₇**H**₁₁ (1a) and BH₃. A 0.5 mL sample of a THF- d_8 solution containing 56 mg (0.3 mmol) of 1a was mixed with an excess amount of BH₃·THF (0.5 mL, 1.0 M THF) at room temperature. No reaction was observed by NMR spectroscopy.

Reaction of 6-Ph-*arachno***-6,5,7-PC**₂**B**₇**H**₁₁ (2a) and **BH**₃. A 2a THF solution (**A**) was prepared by dissolving 0.174 g (0.79 mmol) of 2a in 3.00 mL of freshly distilled THF. A fresh BH₃·THF (1.0 M THF) solution (**B**) was mixed with **A** in ratios of 0.3/0.1 (S1), 0.2/0.2 (S2), 0.2/0.3 (S3), and 0.1/0.3 (S4) (**A**/**B**, mL/mL) under an inert atmosphere at room temperature. Immediately, *endo*-6-H₃B-*exo*-6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (3) was formed. In each case, the amounts of **3** (M) and free **2a** (M) were calculated by peak integrations of the -21.6 ppm (for **3**) and the -33.0 ppm (for **2a**) peaks in the ¹¹B NMR spectra. These results are summarized in Table 2.

Reaction of 6-Ph-*arachno***-6,8,9-PC**₂**B**₇**H**₁₁ (1a) and Sulfur. A 0.5 mL aliquot of CHCl₃ solution containing ~5 mg (~0.02 mmol) of 1a was mixed with ~5 mg (~0.2 mmol) of S₈ at room temperature. No reaction was observed in 3 h by ¹¹B NMR spectroscopy.

Reaction of 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (2a) and Sulfur: Formation of *endo*-6-S-*exo*-6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (4). A 0.219 g (1.0 mmol) sample of 2a was reacted with 0.048 g (1.5 mmol) of sulfur powder in 17 mL of DME at room temperature. The solution was stirred at room temperature for 22 h. After the mixture was filtered, the volatiles were removed in vacuo to give 0.25 g (>90% yield) of 4. For 4: HRMS (*m/e*) calcd for ¹²C₈¹H₁₆¹¹B₇³¹P³²S 252.1362, found 252.1348; IR (CH₂Cl₂, NaCl, cm⁻¹) 3150 (m, br), 2500 (s), 1950 (w, br), 1450 (w), 1440 (m, br), 1250 (m, br), 1090 (m, br), 910 (m).

Reaction of 6-Ph-*arachno***-6,8,9-PC**₂**B**₇**H**₁₁ (1a) and Peroxide. A 0.5 mL sample of a THF- d_8 solution containing \sim 5 mg (\sim 0.02 mmol)

^{(5) (}a) Hermánek, S.; Jelínek, T.; Plesek, J.; Stíbr, B.; Fusek, J. J. Chem. Soc., Chem. Commun. 1987, 927–928. (b) Stíbr, B.; Plesek, J.; Hermánek, S. Inorg. Synth. 1983, 22, 237–239.

⁽⁶⁾ Garrett, P. M.; George, T. A.; Hawthorne, M. F. Inorg. Chem. 1969, 8, 2008–2009.

	nueleue	\$ (multiplicity according ont 1/11)
	Tucieus	
6-Ph- <i>arachno</i> -6,8,9-PC ₂ B ₇ H ₁₁ (1a) ^o	¹¹ B ¹⁴ { ¹¹ B}	$\begin{array}{l} -5.5 \text{ (d, B2,4; } J_{\text{BH}} 163), -12.0 \text{ (d, B5; } J_{\text{BH}} 163, J_{\text{BHB}} 24), -13.6 \text{ (d, B7; } J_{\text{BH}} 147), \\ -19.7 \text{ (d, B10; } J_{\text{BH}} 153, J_{\text{BHB}} 43), -28.5 \text{ (d, B1; } J_{\text{BH}} 154), -48.4 \text{ (d, B3; } J_{\text{BH}} 159) \\ 7.47, 7.16, 6.93 \text{ (m, 5, phenyl)}, 3.26 \text{ (1, BH)}, 3.13 \text{ (1, BH)}, 2.73 \text{ (1, BH)}, 2.39 \text{ (1, BH)}, 2.25 \text{ (2, BH)}, \\ 1.47 \text{ (1, cage-CH)}, 1.08 \text{ (1, BH)}, 0.46 \text{ (1, cage-CH)}, -0.72 \text{ (1, cage-CH)}, -2.01 \text{ (1, BHB)} \\ 131.5 \text{ (J_{CP}} 13), 128.6, 128.0, 24.4 \text{ (C8, } J_{\text{CB}} 47), 13.2 \text{ (C9; t of d, } J_{\text{CP}} 49, J_{\text{CHendo}} \sim 160, J_{\text{CHexo}} \sim 160) \\ 1.62 \text{ (D)} \end{array}$
Ia ^c	^{11}B (calc) ^{13}C (calc) ^{31}P (calc)	-165.5 (P6) -4.2 (B4), -4.6 (B2), -10.8 (B5), -14.6 (B7), -22.3 (B10), -30.5 (B1), -49.5 (B3) 132.3-142.6 (phenyl), 30.5 (C8), 14.3 (C9) -140.1 (P6)
6-Ph- <i>arachno</i> -6,8,9-PC ₂ B ₇ H ₁₀ ^{$-$} (1a ^{$-$}) ^{d}	¹¹ B	-2.7 (d, B2; $J_{BH} \sim 183$), -4.1 (d, B4; $J_{BH} \sim 155$), -17.3 (d, B5,7; J_{BH} 141), -18.8 (d, B10; $J_{BH} \sim 136$), -41.5 (d, B1,3; J_{BH} 138)
\mathbf{Ia}^{-c} \mathbf{Ib}^{-c}	¹¹ B (calc) ¹¹ B (calc)	-0.7 (B2), -4.9 (B4), -10.1 (B5), -14.5 (B7), -20.2 (B10), -42.2 (B3), -43.5 (B1) 0.1 (B2), -1.3 (B4), -16.3 (B7), -16.7 (B5), -19.4 (B10), -42.3 (B1), -42.8 (B1)
6-Ph- <i>arachno</i> -6,8,9-PC ₂ B ₇ H ₉ ²⁻ ($1a^{2-}$) Ib ²⁻ c	¹¹ B ¹¹ B (calc)	1.2 (1), -18.3 (1), -41.3 (1), -42.9 (2), -44.2 (2) 6.1 (B4), -14.1 (B10), -38.7 (B1), -41.1 (B3), -42.6 (B7), -50.3 (B2), -51.2 (B5)
6-Me- <i>arachno</i> -6,8,9-PC ₂ B ₇ H ₁₁ (1b) ^{<i>b</i>}	¹¹ B	-6.0 (d, B2; J_{BH} 157), -6.7 (d, B4; J_{BH} > 120, overlapped), -11.1 (d, B5; J_{BH} 169), -12.2 (d, B7; J_{BH} 148), -19.9 (d, B10; J_{BH} 146), -28.7 (d, B1; J_{BH} 167), -48.8 (d, B3; J_{BH} 150)
	$^{13}C{^{1}H}$	2.95 (1, BH), 2.79 (1, BH), 2.66 (1, BH), 2.20 (2, BH), 2.09 (1, BH), 1.39 (1, cage-CH), 1.03 (1, BH), 0.75 (3, CH_3), 0.38 (1, cage-CH), -0.90 (1, cage-CH), -2.15 (1, BHB) 25.5 (C8, J_{CB} 63), 12.8 (C9, J_{CP} 43), 7.3 (CH ₃ , J_{CP} 19) -184 3 (P6)
\mathbf{Ib}^{c}	^{11}B (calc) ^{13}C (calc) ^{31}P (calc)	-4.8 (B2), -6.6 (B4), -10.7 (B5), -11.0 (B7), -22.1 (B10), -30.3 (B1), -50.3 (B3) 31.5 (C8), 14.4 (C9), 11.4 (C11) -169.5 (P6)
$6\text{-Ph-}arachno-6,5,7\text{-PC}_2B_7H_{11}\left(2a \right)$	${}^{11}{ m B}^b$ ${}^1{ m H}\{{}^{11}{ m B}\}^b$	-1.6 (d, B4; J_{BH} 178), -7.4 (d, B8,10; J_{BH} 149), -33.0 (d, B1,3,9; J_{BH} 167), -41.6 (d, B2; J_{BH} 149) 7.35 -6.76 (5, phenyl), 2.95 (3, BH), 2.06 (2, BH), 1.97 (1, BH), 0.82 (s, 2H, cage-CH), 0.80 (1 BH) -2.98 (2 BHB)
	${}^{13}C{^{1}H}^{ef}$ ${}^{31}P^{b}$	$130.2-127.9$ (phenyl), 3.2 (C5,7 J_{CP} 55) -72.5 (P6)
$\mathbf{V}\mathbf{a}^{c}$	¹¹ B (calc) ¹³ C (calc) ³¹ P (calc)	-2.3 (B4), -8.9 (B8,10), -33.6 (B5,7), -36.7 (B9), -45.7 (B2) 146.9-132.8 (phenyl), 5.3 (C5,7) -49.9 (P6)
6-Me- <i>arachno</i> -6,5,7-PC ₂ B ₇ H ₁₁ (2b)	${}^{11}\mathrm{B}^{b}$ ${}^{1}\mathrm{H}\{{}^{11}\mathrm{B}\}^{f}$	-1.9 (d, B4; J _{BH} 176), -6.9 (d, B8,10; J _{BH} 149), -33.5 (d, B1,3,9; J _{BH} 167), -41.9 (d, B2; J _{BH} 148) 3.09 (1, BH), 2.56 (2, BH), 1.59 (2, BH), 1.56 (d, 3, CH ₃ ; J _{PH} 11), 1.37 (1, BH), 1.06 (2, cage-CH), 0.07 (1, BH), -3.23 (2, BHB)
	${}^{13}C{}^{1}H{}^{e,f}$ ${}^{31}P^{b}$	18.1 (CH_3 ; J_{CP} 43), 2.4 ($C5$,7, J_{CP} 52) -65.2 ($P6$)
$\mathbf{V}\mathbf{b}^{c}$	11 B (calc) 13 C(calc) 31 P(calc)	-3.8 (B4), -8.9 (B8,10), -34.6 (B1,3), -36.5 (B9), -46.0 (B2) 22.8 (C11), 8.0 (C5,7) -55.0 (P6)
$\begin{array}{l} \text{6-Ph-}arachno\text{-}6,5,10\text{-}\text{PC}_2\text{B}_7\text{H}_{10}^-\\ \text{II}^-\end{array}$	¹¹ B{ ¹ H} ^g ¹¹ B (calc)	9.7, 1.6, -16.6, -23.7, -28.6, -41.6, -43.9 11.4 (B8), 0.0 (B4), -15.0 (B2), -20.4 (B7), -34.4 (B9), -36.7 (B3), -46.8 (B1)
endo-6-BH ₃ - exo -6-Ph- $arachno$ -6,5,7- PC ₂ B ₇ H ₁₁ (3) ^{d,g}	¹¹ B	4.4 (B4), -6.3 (B8,10), -21.6 (B1,3,4), -39.9 (BH ₃), -43.7 (B2)
\mathbf{VI}^{c}	¹¹ B (calc)	2.5 (B4), -8.7 (B10), -8.9 (B8), -22.3 (B3), -23.0 (B1), -24.9 (B9), -44.0 (BH ₃), -47.1 (B2)
endo-6-S-exo-6-Ph-arachno-6,5,7- PC ₂ B ₇ H ₁₁ (4) ^b	¹¹ B ¹³ C{ ¹ H}	0.3 (d, B4; <i>J</i> _{BH} 178), -7.4 (d, B8,10; <i>J</i> _{BH} 150), -14.3 (d, B1,3; <i>J</i> _{BH} 163), -16.5 (d, B9; <i>J</i> _{BH} 151), -44.9 (d, B2; <i>J</i> _{BH} 150) 127.9-133.1 (phenyl), 15.0 (C7,8) 5.6 (PC)
VII ^c	^{11}B (calc) ^{13}C (calc) ^{31}P (calc)	0.0 (B4), -8.1 (B8,10), -13.0 (B1,3), -18.5 (B9), -46.7 (B2) 131.5-150.2 (phenyl), 21.8 (C7,8) 22.4 (P6)
endo-6-O-exo-6-Ph-arachno-6,5,7-PC_2B_7H_{11} (5)^b	¹¹ B	-0.6 (d, B4; J_{BH} 175), -4.7 (d, B8,10; J_{BH} 144), -12.0 (d, B1,3; J_{BH} 163), -19.5 (d, B9; J_{BH} 154), -46.1 (d, B2; J_{BH} 146) -18.7 (P6)
VIII ^c	¹¹ B (calc) ³¹ P(calc)	-2.1 (B4), -7.1 (B8,10), -12.3 (B1,3), -21.6 (B9), -49.2 (B2) -18.9 (P6)
$\mu_{7,8}\-\{\mathrm{HS}(\mathrm{Ph})\mathrm{P}\}\-hypho\-7,8\-C_2B_6H_{11}\ (6)^b$	¹¹ B ¹ H{ ¹¹ B}	-7.8 (d, B4,6, J_{BH} 135), -25.3 (d, B5, J_{BH} 144), -28.4 (d, J_{BH} , B2,3, 132), -54.0 (d, J_{BH} , B1, 141) 8.09 -7.59 (phenyl), 2.37 (2, BH), 2.30 (1, BH), 1.79 (2, BH), 1.55 (SH), 1.30 (2, cage-CH), -1.05 (1, BH), -1.49 (d, BHB, ${}^{3}J_{PH}$ 35), -1.83 (2, BHB) 138 e^{-1202} (2, phenyl), 2.4 (C7.8)
\mathbf{IX}^c	¹¹ B(calc) ¹³ C(calc) ³¹ P(calc)	153.0 ^{-1,29,2} (pneny1), 2.4 (C7,8) 94.4 (P9) -9.3 (B4,6), -29.1 (B5), -30.1 (B2,3), -58.9 (B1) 137.9-133.3 (pheny1), 13.7 (C7,8) 94.0 (P9)

Table 1 (Continued)

compounds	nucleus	δ (multiplicity, assignment, J (Hz))			
$cis-(\eta^{1}-[6-Ph-arachno-6,5,7-PC_2B_7H_{11}])_{2}$ PtBr ₂ (7) ^f	^{11}B $^{1}H{^{11}B}$ $^{13}C{^{1}H}$ ^{31}P	$\begin{array}{c} 9.8 \ (d, J_{\rm BH} 139), 2.4 \ (d, J_{\rm BH} 150), -4.7 \ (br), -20.2 \ (br), -22.3 \ (br), -34.2 \ (br), \\ -42.5 \ (d, J_{\rm BH} 151) \\ 7.96 - 7.29 \ (m, phenyl), 3.39 \ (BH), 2.99 \ (BH), 2.75 \ (BH), 2.49 \ (BH), 2.14 \ (BH), 1.56 \\ 1.43 \ (cage-CH), 1.31 \ (BH), 0.93 \ (cage-CH), -1.45 \ (BHB), -1.93 \ (BHB) \\ 132.0 - 128.9 \ (phenyl), 4.6 \ (cage \ C) \\ -5.2 \ (J_{Pt-P} 3010); \ (-8.2, J_{Pt-P} 3010)^h \end{array}$			
$\begin{array}{l} \textit{trans-}(\eta^1\text{-}[6\text{-Ph-}\textit{arachno-}\\ 6,5,7\text{-}\text{PC}_2B_7H_{11}])_2\text{PdBr}_2\ (\textbf{8})^f\end{array}$	¹¹ B	1.7 (d, $J_{\rm BH}$ 140), -4.1 (br), -20.7 (br), -23.8 (br) -23.0 (br), -41.9 (d, $J_{\rm BH}$ 148)			
8-Ph-7-(Ph ₃ P) ₂ - <i>nido</i> - 7,8,10,11-PtPC ₂ B ₇ H ₉ (9) ^f	^{11}B $^{1}H{^{11}B}$ $^{13}C{^{1}H}$ ^{31}P	$\begin{array}{l} -6.1 \; ({\rm d}, J_{\rm BH} \sim \! 100), -12.6 \; ({\rm d}, J_{\rm BH} \sim \! 109), -15.6 \; ({\rm d}, J_{\rm BH} 143), -17.7 \; ({\rm br}), -21.8 \; ({\rm br}), \\ -37.2 \; ({\rm d}, J_{\rm BH} 140) \\ 7.59 - 6.98 \; ({\rm phenyl}), 3.94 \; (1, \rm BH), 3.10 \; (1, \rm CH), 2.47 \; (1, \rm BH), 2.17 \; (1, \rm BH), 1.81 \; (1, \rm BH), \\ 1.67 \; (1, \rm CH), 1.54 \; (1, \rm BH), 0.71 \; (1, \rm BH) \\ 134.4 - 127.7 \; ({\rm phenyl}), 54.2 \; ({\rm cage \ C}), 43.6 \; ({\rm cage \ C}) \\ 23.0 \; (J_{\rm Pt-P} 3596), 14.8 \; (J_{\rm Pt-P} 4218, J_{\rm PP} 18), 14.3 \; (J_{\rm Pt-P} 4236, J_{\rm PP} 17) \end{array}$			
7-Ph-11-(η ⁵ -C ₅ H ₅)- <i>nido</i> - 11,7,9,10-CoPC ₂ B ₇ H ₉ (10) ^f	^{11}B $^{1}H{^{11}B}$ $^{13}C{^{1}H}$ ^{31}P	$\begin{array}{l} -3.4 \; ({\rm d}, J_{\rm BH} 152), -7.1 \; ({\rm d}, J_{\rm BH} 149), -9.0 \; ({\rm d}, J_{\rm BH} 152), -15.4 \; ({\rm d}, J_{\rm BH} 151, J_{\rm BP} 61), \\ -17.2 \; ({\rm d}, J_{\rm BH} 151), -19.2 \; ({\rm d}, J_{\rm BH} 169), -35.6 \; (J_{\rm BH} 148) \\ 7.64 - 7.42 \; (5, {\rm phenyl}), 5.16 \; (5, C_{5}H_{5}), 3.68 \; (1, {\rm CH}), 3.34 \; (1, {\rm BH}), 3.07 \; (1, {\rm BH}), \\ 2.79 \; (1, {\rm BH}), 2.40 \; (2, {\rm CH}, {\rm BH}), 1.73 \; (2, {\rm BH}), 1.14 \; (1, {\rm BH}) \\ 133.5 - 129.3 \; ({\rm phenyl}), 86.7 \; (C_{5}H_{5}), 59.2, 47.8 \; (J_{CP} 34) \\ -31.5 \end{array}$			
$\begin{array}{l} commo\mbox{-Ni-(7-Ni-8'-Ph-8',10',11'-nido\mbox{-}PC_2B_7H_9)-} \\ (7\mbox{-Ni-8-Ph-8,10,11-nido\mbox{-}PC_2B_7H_9)} \ (11)^f \end{array}$	¹¹ B ³¹ P	-3.3 (d, $J_{\rm BH}$ 158), -5.5 (d, $J_{\rm BH}$ 146), -12.1 (d, $J_{\rm BH}$ 142), -19.4 (d, $J_{\rm BH}$ $\sim\!\!126$, overlapped), -20.2 (d, $J_{\rm BH}$ $\sim\!\!158$, overlapped), -30.6 (d, $J_{\rm BH}$ 150) -33.1			

^{*a* ¹}H NMR (500.4 MHz), ¹¹B NMR (160.5 MHz), ¹³C NMR (125.8 MHz), ³¹P NMR (145.8 MHz). ^{*b*} C₆D₆. ^{*c*} DFT/GIAO (B3LYP/6-311G*). ^{*d*} THF-*d*₈. ^{*e*} Measured at -83 °C. ^{*f*} CD₂Cl₂. ^{*g* ¹¹}B NMR (64.2 MHz). ^{*h*} See text.

Table 2. Summary of ¹¹B NMR Integration Data for the Reaction of **2a** with BH₃•THF

	S1	S2	S3	S4
[3] (-21.6 ppm)	0.096	0.082	0.071	0.045
[2a] (-33.0 ppm)	0.100	0.050	0.035	0.021
K_{eq}^{a}	6.1	3.9	3.8	3.0
$\Delta \hat{G}$ (kcal/mol)	-4.5	-3.4	-3.3	-2.7

^{*a*} $K_{\text{eq}} = [\mathbf{3}]_{\text{eq}} [\mathbf{2a}]_{\text{eq}} [\mathbf{BH}_3 \cdot \text{THF}]_{\text{eq}}.$

of 1a was mixed with ~ 0.05 mL of H₂O₂ at room temperature. Decomposition of 1a to borate was observed by NMR spectroscopy.

Reaction of 6-Ph-*arachno***-6,5,7-PC**₂**B**₇**H**₁₁ (2a) and Peroxide: **Formation of** *endo***-6-O***exo***-6-Ph***-arachno***-6,5,7-PC**₂**B**₇**H**₁₁ (5). A sample (~10 mg, ~0.05 mmol) of **2a** was dissolved in 0.5 mL of THF d_8 containing a small amount of peroxide at room temperature. Immediately, gas was generated, and ¹¹B and ³¹P NMR analyses indicated the formation of *endo*-6-O-*exo*-6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (5). **5** proved to be too unstable to be isolated in a pure form. For **5**: HRMS (CI neg) (*m/e*) calcd for ¹²C₈¹H₁₆¹¹B₇³¹P¹⁶O, 236.1590, found 236.1600.

Reaction of 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (2a) with Excess Sulfur: Synthesis of $\mu_{7,8}$ -{HS(Ph)P}-*hypho*-7,8-C₂B₆H₁₁ (6). A 0.28 g (1.3 mmol) sample of 2a was reacted with 0.3 g (9.4 mmol, excess) of sulfur powder in 10 mL of DME at room temperature. The solution was stirred at room temperature for 8 h. After the mixture was filtered, the volatiles were removed in vacuo. The residue was purified by preparatory TLC (hexanes/CH₂Cl₂ = 1:1, v/v) to give 0.16 g (0.67 mmol, 52%) of yellow liquid 6. For 6: HRMS (CI neg) (*m/e*) calcd for ¹²C₈¹H₁₇¹¹B₆³¹P³²S 242.1347, found 242.1348; IR (CH₂Cl₂ sol, NaCl, cm⁻¹) 3150 (m), 2910 (m), 2540 (s), 1980 (w), 1850 (w), 1590 (w), 1480 (m), 1430 (s), 1310 (m), 1170 (m), 1100 (s), 1050 (s), 960 (m), 910 (s).

 $cis-(\eta^{1}-[6-Ph-arachno-6,5,7-PC_2B_7H_{11}])_2PtBr_2$ (7). A 0.16 g (0.73 mmol) sample of **2a** was dissolved in 5 mL of DME at room temperature. Then 0.114 g (0.32 mmol) of PtBr₂ was added. The reaction mixture was stirred at room temperature for 2.5 h. After the mixture was filtered, the solvent was removed in vacuo. A 0.079 g (0.10 mmol, 31%) sample of yellow **7** was obtained after preparative

TLC (pentane/CH₂Cl₂ = 2:1, v/v). For **7**: mp 198–200 °C. Anal. Calcd: C, 24.25; H, 4.07. Found: C, 23.30; H, 4.16. IR (CH₂Cl₂ sol, NaCl, cm⁻¹) 3150 (w), 2550 (s), 1480 (s), 1320 (s), 1150 (s), 1050 (s), 950 (m), 870 (s).

trans-(η^1 -[6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁])₂PdBr₂ (8). A 0.40 g (1.45 mmol) sample of **2a** was dissolved in 15 mL of DME at room temperature. Then, 0.116 g (0.62 mmol) of PdBr₂ was added. The reaction mixture was stirred at room temperature for 21 h. Workup of the reaction as described above yielded a mixture containing, according to the ³¹P and ¹H NMR spectra, at least two products that were inseparable by silica gel column chromatography. Crystals of 8 (>10 mg) *trans-*(η^1 -[6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁])₂PdBr₂ were obtained by crystallization from this mixture, but it was not possible to isolate other products in sufficient quantities for characterization. For **8**: Anal. Calcd for C₁₆H₃₂B₁₄Br₂P₂Pd·¹/₆C₆H₁₄: C, 28.4; H, 4.81. Found: C, 28.4; H, 5.03.

8-Ph-7-(Ph₃P)₂*-nido*-7,8,10,11-PtPC₂B₇H₉ (9). A 0.26 g (1.2 mmol) sample of **1a** was dissolved in 10 mL of DME under an inert atmosphere. A 1.8 mL aliquot of MeLi (1.4 M Et₂O solution) was added dropwise at -78 °C. After 6-Ph-6,8,9-PC₂B₇H₉²⁻ (**1a**²⁻) formation was observed by ¹¹B NMR spectroscopy, 0.95 g (1.2 mmol) of (Ph₃P)₂-PtCl₂ was added to this reaction mixture at -78 °C. The mixture was stirred at room temperature for 18 h. After the mixture was filtered, the volatiles were removed in vacuo. The resulting dark brown species was chromatographed on preparative TLC plates (hexanes/CH₂Cl₂ = 3:2, v/v) to give 0.38 g (0.41 mmol, 34%) of yellow **9**. For **9**: mp 148–150 °C. Anal. Calcd: C, 56.43; H, 4.74. Found: C, 55.60; H, 4.66. IR (CH₂Cl₂ sol, NaCl, cm⁻¹) 2890 (s), 2800 (m), 2530 (s), 1460 (s), 1420 (s), 1180 (m), 1110 (m), 1090 (m), 680 (s).

7-Ph-11-(η^5 -**C**₅**H**₅)-*nido*-**11**,7,9,10-**CoPC**₂**B**₇**H**₉ (10). A 0.48 g (2.2 mmol) sample of **1a** was dissolved in 20 mL of DME at room temperature under an inert atmosphere. A 0.44 g (2.4 mmol) sample of CpCo(CO)₂ was then added dropwise to this solution at room temperature. The reaction mixture was next heated at 70 °C under an inert atmosphere for 66 h. After the solution was filtered, the solvent was vacuum evaporated yielding a deep brown crude product (0.69 g, 2.0 mmol). After this crude product was purified by preparative TLC (hexanes/CH₂Cl₂ = 4:1, v/v), 0.11 g (0.33 mmol, 15%) of dark red **10**

was obtained. For 10: mp 190-192 °C. Anal. Calcd: C, 45.81; H, 5.62. Found: C, 45.10; H, 5.72. HRMS (CI neg) (m/e) calcd for ¹²C₁₃¹H₁₉¹¹B₇³¹P⁵⁹Co 342.1208, found 342.1224. IR (CH₂Cl₂ sol, NaCl, cm⁻¹) 3080 (w), 2550 (s), 1460 (m), 1420 (m), 1400 (m), 1090 (s), 1050 (m), 1000 (s), 810 (s).

commo-Ni-(7-Ni-8'-Ph-nido-8',10',11'-PC2B7H9)(7-Ni-8-Ph-nido-8,10,11-PC2B7H9) (11). A 0.295 g (1.35 mmol) sample of 1a was dissolved in 15 mL of DME under an inert atmosphere. A 1.0 mL aliquot of MeLi (1.4 M Et₂O solution) was introduced dropwise at -78 °C. To this mixture, 0.148 g (0.68 mmol) of NiBr₂ was added, resulting in an immediate color change. The reaction mixture was stirred at room temperature for 24 h. After the precipitate was filtered off, the solvent was removed in vacuo. After preparative TLC (hexanes/ $CH_2Cl_2 = 4:1$, v/v), 0.034 g ($R_f = 0.45$, 0.069 mmol, 10%) of **11** were obtained as a yellow solid. For 11, Anal. Calcd: C, 39.03; H, 5.73. Found: C, 39.23; H, 5.61. HRMS (m/e) calcd for ${}^{12}C_{16}{}^{11}H_{28}{}^{11}B_{14}{}^{31}P_2Ni$ 494.2322, found 494.2308. An additional product (TLC, $R_f = 0.4$) of the reaction, which according to its mass spectrum is an isomer of 11, could not be isolated sufficiently pure for complete characterization.

Collection and Reduction of the Data. X-ray intensity data for 1a (Penn 3176), 2a (Penn 3184), 7 (Penn 3183), 8 (Penn 3198), 9 (Penn 3182), 10 (Penn 3171), and 11 (Penn 3180) were collected on either a Rigaku R-AXIS IIc or Mercury CCD (for 8) area detector employing graphite-monochromated Mo K α radiation ($\lambda = 0.71069$ Å). Indexing was performed from a series of 1° oscillation images, and a crystalto-detector distance of 82 mm was employed, except for 8 where a series of four 0.5° oscillation images and a 35 mm distance were used. Oscillation images were processed to produce a listing of unaveraged F^2 and $\sigma(F^2)$ values which were then passed to the teXsan⁷ program package for further processing and structure solution on Silicon Graphics Indigo R4000 or O2 computers. The intensity data were corrected for Lorentz and polarization effects. Absorption correction data for 8 and 9 were made using REQAB8 (minimum and maximum transmission 0.599, 1.000 for 8; 0.748, 1.000 for 9). 8 was found to be twinned by a rotation of 180° about the normal to 001, and twin indexing and processing of twinned data were performed by the TwinSolve9 module of CrystalClear.

Solution and Refinement of the Structure. The structures were solved by direct methods (SIR92)¹⁰ except for **9** which was solved by the Patterson method (DIRDIF).11 Refinements were by full-matrix least squares based on F² using SHELXL-93.¹² All reflections were used during refinement (F^{2} 's that were experimentally negative were replaced by $F^2 = 0$). Crystal and refinement data are given in Table 3. Refined positional parameters, refined thermal parameters, bond distances, and angles are given in the Supporting Information. Non-hydrogen atoms were refined anisotropically. All cage hydrogen atoms were refined isotropically. All hydrogen atoms of 1a and 11 were refined isotropically. Cage hydrogen atoms of 7 and all the hydrogen atoms of 8 were included as constant contribution to the structure and were not refined. All other hydrogen atoms were refined using a "riding" model. In 10, the cyclopentadienyl ligand is rotationally disordered through two approximately equally populated orientations. The multiplicities of the two orientations refined to 0.49(3) and 0.51(3).

Computational Studies. The DFT/GIAO/NMR method,13 using either the Gaussian 9414 or 9815 program, was used in a manner similar to that previously described.^{2,16,17} The geometries were fully optimized at the B3LYP/6-311G* level within the specified symmetry constraints

(using the standard basis sets included) on a (4)-processor Origin 200 computer running IRIX 6.5.6. A vibrational frequency analysis was carried out on each optimized geometry at the B3LYP/6-311G* level with a true minimum found for each structure (i.e., possessing no imaginary frequencies). The NMR chemical shifts were calculated at the B3LYP/6-311G* level using the GIAO option within Gaussian 94/ 98. The ¹¹B NMR GIAO chemical shifts are referenced to BF₃·Et₂O using an absolute shielding constant of 102.24.17 The 13C NMR GIAO chemical shifts are referenced to TMS using an absolute shielding constant of 184.38 and are corrected as described previously.^{16,17} The ³¹P NMR GIAO chemical shifts were first referenced to PH₃ using an absolute shielding constant of 557.2396 ppm and then converted to the H₃PO₄ reference scale using the experimental value of δ (PH₃) = -240 ppm.16b

Results and Discussion

Syntheses and Structural Characterizations of 6-R-arachno-6,8,9-PC₂B₇H₁₁ (1) and 6-R-arachno-6,5,7-PC₂B₇H₁₁ (2). The 10-vertex phosphadicarbaboranes 6-R-arachno-6,8,9-PC₂B₇H₁₁ (1a and 1b) and 6-R-*arachno*-6,5,7-PC₂B₇H₁₁ (2a and 2b) were respectively synthesized by reactions of the isomeric adjacentcarbon arachno-4,5-C₂B₇H₁₃⁵ and nonadjacent-carbon arachno-4,6-C₂B₇H₁₃⁶ carboranes with RPCl₂ (R = Ph, 1a and 2a; R = Me, 1b and 2b) in the presence of Proton Sponge (eqs 1) and 2).

arachno-4,5-C₂B₇H₁₃ + RPCl₂
$$\xrightarrow{(1) 3 \text{ PS}}_{-3 \text{ PSH}^+\text{Cl}^-}$$

 $6-R-arachno-6,8,9-PC_2B_7H_{11}$ (1) (R = Ph, 1a; Me, 1b)

arachno-4,6-C₂B₇H₁₃ + RPCl₂
$$\frac{2 \text{ PS}}{-2 \text{ PSH}^+\text{Cl}^-}$$

The products were isolated as air- and moisture-sensitive materials with typical yields ranging from 49 to 68%. The compositions of these compounds were confirmed by elemental analyses and/or high-resolution mass spectrometry.

⁽⁷⁾ Crystal Structure Analysis Package, Molecular Structure Corporation 1985,

⁽⁸⁾ REQAB: Jacobsen, R. A. Private communication, 1994.

⁽⁹⁾ TwinSolve: Christer Swensson, MaxLab, Lund, Sweden, private communication.

⁽¹⁰⁾ SIR92: Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Polidoro, G. J. Appl. Crystallogr. **1994**, 27, 435. (11) Parthasrathi, V.; Beurskens, P. T.; Slot, H. J. B. Acta Crystallogr. **1983**,

A39 860 - 864

⁽¹²⁾ Sheldrick, G. M. SHELXL-93: Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1993.

⁽¹³⁾ Yang, X.; Jiao, H.; Schleyer, P. v. R. Inorg. Chem. 1997, 36, 4897-4899 and references therein.

⁽¹⁴⁾ Frisch, M, J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995.

⁽¹⁵⁾ Frisch, M, J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, Komaoni, E., Sompets, K., Matun, K. E., Fok, D. J., Kelli, T., Al-Laffill, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.

^{(16) (}a) Bausch, J. W.; Rizzo, R. C.; Sneddon, L. G.; Wille, A. E.; Williams, (10) (a) Bausen, J. W., Nizzo, R. C., Sheudon, L. O., Wine, A. L., Winnans, R. E. Inorg. Chem. 1996, 35, 131–135. (b) Shedlow, A. M.; Sneddon, L. G. Inorg. Chem. 1998, 37, 5269–5277. (c) Kadlecek, D. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2000, 122, 10868–10877.
 (17) Tebben, A. J. M.S. Thesis, Villanova University, 1997.

Table 3. Crystallographic Data Collection and Structure Refinement Information

	1a	2a	7	8
empirical formula	$C_8B_7H_{16}P$	C ₈ B ₇ H ₁₆ P	Pt2C35B28H67P4Br4	PdC16B14H32P2Br2
formula weight	218.85	218.85	1624.27	703.92
crystal class	orthorhombic	triclinic	triclinic	monoclinic
space group	Pbca	$P\overline{1}$	$P\overline{1}$	$P2_1/n$ (#14)
Z	8	4	2	2
a, Ă	12.5579(1)	11.0280(2)	15.5744(3)	8.6301(7)
$b, \text{\AA}$	15.6169(2)	11.0406(3)	18.3360(3)	8.5428(7)
c, A	12.6071(1)	10.7862(2)	11.3806(2)	19.166(2)
a, deg		107.620(1)	102.285(1)	00.005(2)
β , deg		91.338(2)	109.983(1)	92.095(3)
γ , deg	2472 45(4)	95.646(1)	78.590(1)	1412 1/2
v, A^{2}	24/2.45(4) 1.81	1243.04(3)	2930.34(9) 75.69	1412.1(2)
μ , cm ·	1.01 0.32 × 0.30 × 0.26	1.80 0.23 × 0.15 × 0.14	/3.08 0.26 × 0.20 × 0.06	30.08 0.32 × 0.12 × 0.06
$D_{\rm res} = a/cm^3$	0.32 × 0.30 × 0.20	0.25 × 0.15 × 0.14	0.20 × 0.20 × 0.00 1 825	0.32 × 0.12 × 0.00
F(000)	912	456	1546	688
2θ angle, deg	5.22-50.68	5.08 - 50.7	5 04-54 96	5 1-55 1
hkl collected	$-15 \le h \le 15$	$-13 \le h \le 13$	$-20 \le h \le 20$	$-10 \le h \le 10$
concerca	$-18 \le k \le 18$	$-13 \le k \le 13$	$-23 \le k \le 23$	$-10 \le k \le 10$
	$-15 \le l \le 15$	$-12 \le l \le 12$	$-14 \le l \le 14$	$-21 \le l \le 23$
no. of reflns measured	13 524	10 088	30 754	8710
no. of unique reflns	2257 ($R_{int} = 0.0393$)	$4190 (R_{int} = 0.0296)$	5) $12\ 376\ (R_{\rm int} = 0.0515)$	8710
no. of observed reflns	$2129 (F > 4\sigma)$	3781 ($F > 4\sigma$)	$11\ 206\ (F \ge 4\sigma)$	8221 ($F > 4\sigma$)
no. of reflns used	2257	4190	12 376	8710
in refinement				
no. parameters	213	417	659	161
R^a indices $(F > 4\sigma)$	$R_1 = 0.0685$	$R_1 = 0.0485$	$R_1 = 0.0550$	$R_1 = 0.0852$
	$wR_2 = 0.1519$	$wR_2 = 0.1080$	$wR_2 = 0.1407$	$wR_2 = 0.2261$
R^a indices (all data)	$R_1 = 0.0740$	$R_1 = 0.0553$	$R_1 = 0.0614$	$R_1 = 0.0898$
	$wR_2 = 0.1548$	$wR_2 = 0.1123$	$wR_2 = 0.1476$	$wR_2 = 0.2320$
GOF ^b	1.316	1.102	1.130	1.217
tinal difference peaks, e/A ³	+0.200, -0.215	+0.186, -0.296	+1.912, -2.278	+4.315, -1.811
	9		10	11
empirical formula	$PtC_{53}B_7H_{53}P_3$		CoC ₁₃ B ₇ H ₁₉ P	NiC ₁₆ B ₁₄ H ₂₈ P ₂
empirical formula formula weight	$PtC_{53}B_{7}H_{53}P_{3}$ 1053.62		CoC ₁₃ B ₇ H ₁₉ P 340.85	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37
empirical formula formula weight crystal class	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic	$\begin{array}{c} \text{NiC}_{16}\text{B}_{14}\text{H}_{28}\text{P}_{2} \\ 492.37 \\ \text{monoclinic} \\ \text{P2} \end{array}$
empirical formula formula weight crystal class space group	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic <i>P</i> 1		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i>	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P_{2_1/c}$
empirical formula formula weight crystal class space group Z	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic $P\overline{1}$ 2 12.0520(2)		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23 4553(2)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2)
empirical formula formula weight crystal class space group Z a, Å b, Å	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic $P\overline{1}$ 2 12.9520(3) 18.3810(4)		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2)
empirical formula formula weight crystal class space group Z a, Å b, Å c Å	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic $P\overline{1}$ 2 12.9520(3) 18.3819(4) 11.2556(3)		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17 2053(2)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2)
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å α deg	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic $P\overline{1}$ 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2)		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2)
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å α, deg β, deg β. deg	$\begin{array}{c} PtC_{53}B_{7}H_{53}P_{3}\\ 1053.62\\ triclinic\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ \end{array}$		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1)
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å α , deg β , deg γ , deg	$\begin{array}{c} PtC_{53}B_{7}H_{53}P_{3}\\ 1053.62\\ triclinic\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ \end{array}$		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1)
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å α, deg β, deg γ, deg V, Å ³	$\begin{array}{c} PtC_{53}B_{7}H_{53}P_{3}\\ 1053.62\\ triclinic\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ \end{array}$		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P_{2_1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7)
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å α , deg β , deg γ , deg V, Å ³ μ , cm ⁻¹	$\begin{array}{c} PtC_{53}B_{7}H_{53}P_{3}\\ 1053.62\\ triclinic\\ P\bar{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ 30.43\\ \end{array}$		CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å α , deg β , deg γ , deg γ , deg V, Å ³ μ , cm ⁻¹ crystal size, mm ³	$\begin{array}{c} {\rm PtC}_{53}{\rm B}_7{\rm H}_{53}{\rm P}_3\\ 1053.62\\ {\rm triclinic}\\ P\bar{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ 30.43\\ 0.32\times0.22\times0.\end{array}$	07	$\begin{array}{l} \text{CoC}_{13}\text{B}_{7}\text{H}_{19}\text{P} \\ 340.85 \\ \text{orthorhombic} \\ Pbcn \\ 8 \\ 23.4553(2) \\ 7.9746(1) \\ 17.2053(2) \\ \end{array}$	$\begin{array}{c} {\rm NiC_{16}B_{14}H_{28}P_2}\\ {\rm 492.37}\\ {\rm monoclinic}\\ {\rm P2_{1}/c}\\ {\rm 4}\\ {\rm 13.0466(2)}\\ {\rm 10.5141(2)}\\ {\rm 17.7492(2)}\\ {\rm 90.271(1)}\\ {\rm 2434.69(7)}\\ {\rm 9.34}\\ {\rm 0.42}\times 0.26\times 0.24 \end{array}$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å α , deg β , deg γ , deg γ , deg V, Å ³ μ , cm ⁻¹ crystal size, mm ³ D_{calc} , g/cm ³	$\begin{array}{c} PtC_{53}B_{7}H_{53}P_{3}\\ 1053.62\\ triclinic\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ 30.43\\ 0.32\times0.22\times0.\\ 1.450\\ \end{array}$	07	$\begin{array}{l} CoC_{13}B_7H_{19}P\\ 340.85\\ orthorhombic\\ Pbcn\\ 8\\ 23.4553(2)\\ 7.9746(1)\\ 17.2053(2)\\ \end{array}$	$\begin{array}{c} {\rm NiC}_{16}{\rm B}_{14}{\rm H}_{28}{\rm P}_2 \\ 492.37 \\ {\rm monoclinic} \\ {\it P2}_{1/c} \\ 4 \\ 13.0466(2) \\ 10.5141(2) \\ 17.7492(2) \\ 90.271(1) \\ 2434.69(7) \\ 9.34 \\ 0.42 \times 0.26 \times 0.24 \\ 1.343 \end{array}$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å α , deg β , deg γ , deg r, deg γ , deg γ , deg r, deg γ , deg γ , deg γ , deg γ , deg	$\begin{array}{c} PtC_{53}B_7H_{53}P_3\\ 1053.62\\ triclinic\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ 30.43\\ 0.32\times0.22\times0.\\ 1.450\\ 1058\\ \end{array}$	07	$\begin{array}{c} {\rm CoC_{13}B_7H_{19}P} \\ 340.85 \\ {\rm orthorhombic} \\ Pbcn \\ 8 \\ 23.4553(2) \\ 7.9746(1) \\ 17.2053(2) \\ \end{array}$	$\begin{array}{c} {\rm NiC}_{16}{\rm B}_{14}{\rm H}_{28}{\rm P}_2 \\ 492.37 \\ {\rm monoclinic} \\ {\rm P2}_{1/c} \\ 4 \\ 13.0466(2) \\ 10.5141(2) \\ 17.7492(2) \\ 90.271(1) \\ 2434.69(7) \\ 9.34 \\ 0.42 \times 0.26 \times 0.24 \\ 1.343 \\ 1008 \\ \end{array}$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å a, deg β , deg γ , deg γ , deg V, Å ³ μ , cm ⁻¹ crystal size, mm ³ D_{calc} , g/cm ³ F(000) 2θ angle, deg	$\begin{array}{c} PtC_{53}B_{7}H_{53}P_{3}\\ 1053.62\\ triclinic\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ 30.43\\ 0.32\times0.22\times0.\\ 1.450\\ 1058\\ 5.26{-}54.96\\ \end{array}$	07	$\begin{array}{c} \text{CoC}_{13}\text{B}_{7}\text{H}_{19}\text{P} \\ 340.85 \\ \text{orthorhombic} \\ Pbcn \\ 8 \\ 23.4553(2) \\ 7.9746(1) \\ 17.2053(2) \\ \end{array}$ $\begin{array}{c} 3218.19(6) \\ 11.50 \\ 0.32 \times 0.25 \times 0.08 \\ 1.407 \\ 1392 \\ 5.04-50.7 \\ \end{array}$	$\begin{array}{c} {\rm NiC}_{16}{\rm B}_{14}{\rm H}_{28}{\rm P}_2 \\ 492.37 \\ {\rm monoclinic} \\ P2_1/c \\ 4 \\ 13.0466(2) \\ 10.5141(2) \\ 17.7492(2) \\ 90.271(1) \\ 2434.69(7) \\ 9.34 \\ 0.42 \times 0.26 \times 0.24 \\ 1.343 \\ 1008 \\ 5.48 - 50.68 \\ \end{array}$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å α , deg β , deg γ , deg	$\begin{array}{c} {\rm PtC}_{53}{\rm B}_7{\rm H}_{53}{\rm P}_3\\ 1053.62\\ {\rm triclinic}\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ 30.43\\ 0.32\times0.22\times0.\\ 1.450\\ 1058\\ 5.26{-}54.96\\ -16\leq h\leq 15\\ \end{array}$	07	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 $0.32 \times 0.25 \times 0.08$ 1.407 1392 5.04-50.7 $-25 \le h \le 28$	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 ≤ h ≤ 15
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg λ , deg λ , deg λ , deg λ , deg λ , deg λ , deg λ , deg λ , deg λ , deg	$\begin{array}{c} \operatorname{PtC}_{53} \operatorname{B}_7 \operatorname{H}_{53} \operatorname{P}_3\\ 1053.62\\ \operatorname{triclinic}\\ P\overline{1}\\ 2\\ 12.9520(3)\\ 18.3819(4)\\ 11.2556(3)\\ 92.702(2)\\ 114.316(1)\\ 81.214(2)\\ 2413.01(10)\\ 30.43\\ 0.32 \times 0.22 \times 0.\\ 1.450\\ 1058\\ 5.26-54.96\\ -16 \leq h \leq 15\\ -23 \leq k \leq 23 \end{array}$	07	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P_{2_1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 ≤ h ≤ 15 -12 ≤ k ≤ 12 5.49 1007
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg γ , deg γ , deg V, Å ³ μ , cm ⁻¹ crystal size, mm ³ D_{calc} , g/cm ³ F(000) 2θ angle, deg <i>hkl</i> collected	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic $P\overline{1}$ 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$	07	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 2005	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P_{2_1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 ≤ h ≤ 15 -12 ≤ k ≤ 12 -21 ≤ l ≤ 20 10.752 10
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg λ^3 μ , cm ⁻¹ crystal size, mm ³ D_{calc} , g/cm ³ F(000) 2θ angle, deg <i>hkl</i> collected	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25.744	07	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 8897 2040 ($B_{10} = 0.0252$)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic P2 ₁ /c 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 $\leq h \leq 15$ -12 $\leq k \leq 12$ -21 $\leq l \leq 20$ 19.738 4220 (B ₁ = -0.0201)
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å a, deg β , deg γ , deg γ , deg γ , deg γ , deg γ , d z, Å α , deg β , deg γ , deg γ , deg γ , deg λ^{3} μ , cm ⁻¹ crystal size, mm ³ D_{calc} , g/cm ³ F(000) 2θ angle, deg <i>hkl</i> collected no. of reflns measured no. of unique reflns	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 $0.32 \times 0.22 \times 0.1450$ 1058 5.26-54.96 $-16 \le h \le 15$ $-23 \le k \le 23$ $-14 \le l \le 14$ 25.744 10.157 ($R_{int} = 0.$	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 897 2940 (<i>R</i> _{int} = 0.0352) 2920 (<i>E</i> \le 4.2)	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 ≤ h ≤ 15 -12 ≤ k ≤ 12 -21 ≤ l ≤ 20 19.738 4230 ($R_{int} = 0.0284$) 4090 ($E > 4 = 3$)
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å a, deg β , deg γ , deg λ^3 μ , cm ⁻¹ crystal size, mm ³ D_{calc} , g/cm ³ F(000) 2θ angle, deg <i>hkl</i> collected no. of reflns measured no. of observed reflns no. of observed reflns	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25 744 10 157 ($R_{int} = 0$. 9610 ($F > 4\sigma$)	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 -25 $\leq h \leq 28$ -9 $\leq k \leq 9$ -20 $\leq l \leq 18$ 18 897 2940 ($R_{int} = 0.0352$) 2829 ($F > 4\sigma$) 2040	$\begin{array}{c} \mathrm{NiC}_{16}\mathrm{B}_{14}\mathrm{H}_{28}\mathrm{P}_2 \\ 492.37 \\ \mathrm{monoclinic} \\ P2_{1/c} \\ 4 \\ 13.0466(2) \\ 10.5141(2) \\ 17.7492(2) \\ 90.271(1) \\ 2434.69(7) \\ 9.34 \\ 0.42 \times 0.26 \times 0.24 \\ 1.343 \\ 1008 \\ 5.48-50.68 \\ -15 \leq h \leq 15 \\ -12 \leq k \leq 12 \\ -21 \leq l \leq 20 \\ 19\ 738 \\ 4230\ (R_{\mathrm{int}} = 0.0284) \\ 4080\ (F > 4\sigma) \\ 4230 \\ \end{array}$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å a, deg β, deg γ, deg λ^3 μ, cm^{-1} crystal size, mm ³ $D_{calc}, g/cm^3$ F(000) 2θ angle, deg <i>hkl</i> collected no. of reflns measured no. of observed reflns no. of observent effins no. of reflns used	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25.744 10.157 ($R_{int} = 0$. 9610 ($F \geq 4\sigma$) 10.157	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 -25 $\leq h \leq 28$ -9 $\leq k \leq 9$ -20 $\leq l \leq 18$ 18 897 2940 ($R_{int} = 0.0352$) 2829 ($F \geq 4\sigma$) 2940	$\begin{array}{c} \mathrm{NiC}_{16}\mathrm{B}_{14}\mathrm{H}_{28}\mathrm{P}_2 \\ 492.37 \\ \mathrm{monoclinic} \\ P2_1/c \\ 4 \\ 13.0466(2) \\ 10.5141(2) \\ 17.7492(2) \\ 90.271(1) \\ 2434.69(7) \\ 9.34 \\ 0.42 \times 0.26 \times 0.24 \\ 1.343 \\ 1008 \\ 5.48 - 50.68 \\ -15 \leq h \leq 15 \\ -12 \leq k \leq 12 \\ -21 \leq l \leq 20 \\ 19 \ 738 \\ 4230 \ (R_{\mathrm{int}} = 0.0284) \\ 4080 \ (F > 4\sigma) \\ 4230 \\ \end{array}$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq 1 \leq 14$ 25 744 10 157 ($R_{int} = 0$. 9610 ($F > 4\sigma$) 10 157	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 -25 $\leq h \leq 28$ -9 $\leq k \leq 9$ -20 $\leq l \leq 18$ 18 897 2940 ($R_{int} = 0.0352$) 2829 ($F \geq 4\sigma$) 2940 266	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P2_{1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 ≤ h ≤ 15 -12 ≤ k ≤ 12 -21 ≤ 1 ≤ 20 19.738 4230 ($R_{int} = 0.0284$) 4080 ($F > 4\sigma$) 420
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25 744 10 157 ($R_{int} = 0.$ 9610 ($F > 4\sigma$) 10 157	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 897 2940 ($R_{int} = 0.0352$) 2829 ($F > 4\sigma$) 2940 266 $R_{int} = 0.0373$	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P_{2_1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 ≤ h ≤ 15 -12 ≤ k ≤ 12 -21 ≤ l ≤ 20 19.738 4230 ($R_{int} = 0.0284$) 4080 ($F > 4\sigma$) 4230
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25 744 10 157 ($R_{int} = 0.$ 9610 ($F > 4\sigma$) 10 157 614 $R_1 = 0.0499$ w $P_2 = 0.1372$	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 897 2940 ($R_{int} = 0.0352$) 2829 ($F > 4\sigma$) 2940 2666 $R_1 = 0.0373$ w $R_2 = 0.0873$	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P_{2_1/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 ≤ h ≤ 15 -12 ≤ k ≤ 12 -21 ≤ l ≤ 20 19.738 4230 ($R_{int} = 0.0284$) 4080 ($F > 4\sigma$) 4230 410 $R_1 = 0.0361$ w $R_2 = 0.0897$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P_1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25.744 10.157 ($R_{int} = 0$. 9610 ($F > 4\sigma$) 10.157 614 $R_1 = 0.0499$ $wR_2 = 0.1372$ $R_1 = 0.0577$	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 8897 2940 ($R_{int} = 0.0352$) 2829 ($F > 4\sigma$) 2940 266 $R_1 = 0.0373$ $wR_2 = 0.0873$ $R_1 = 0.0398$	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic $P_{21/c}$ 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 $\leq h \leq 15$ -12 $\leq k \leq 12$ -21 $\leq l \leq 20$ 19 738 4230 ($R_{int} = 0.0284$) 4080 ($F > 4\sigma$) 4230 410 $R_1 = 0.0361$ $wR_2 = 0.0897$ $R_1 = 0.0379$
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg β , deg hkl collected in refins measured in refinement no. of reflns used in refinement no. parameters R^a indices (all data)	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25 744 10 157 ($R_{int} = 0$. 9610 ($F > 4\sigma$) 10 157 614 $R_1 = 0.0499$ $wR_2 = 0.1372$ $R_1 = 0.0527$ $wR_2 = 0.1425$	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 8897 2940 (<i>R</i> _{int} = 0.0352) 2829 (<i>F</i> > 4 σ) 2940 266 <i>R</i> ₁ = 0.0373 <i>wR</i> ₂ = 0.0873 <i>R</i> ₁ = 0.0398 <i>wR</i> ₂ = 0.0889	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic P2 ₁ /c 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 $\leq h \leq 15$ -12 $\leq k \leq 12$ -21 $\leq l \leq 20$ 19 738 4230 (R _{int} = 0.0284) 4080 (F > 4 σ) 4230 410 R ₁ = 0.0361 wR ₂ = 0.0897 R ₁ = 0.0379 wR ₂ = 0.0909
empirical formula formula weight crystal class space group Z a, Å b, Å c, Å c, Å a, deg β , deg γ , deg β , deg hkl collected no. of reflns measured no. of reflns used in refinement no. parameters R^a indices (all data) GOF b	PtC ₅₃ B ₇ H ₅₃ P ₃ 1053.62 triclinic P1 2 12.9520(3) 18.3819(4) 11.2556(3) 92.702(2) 114.316(1) 81.214(2) 2413.01(10) 30.43 0.32 × 0.22 × 0. 1.450 1058 5.26-54.96 -16 $\leq h \leq 15$ -23 $\leq k \leq 23$ -14 $\leq l \leq 14$ 25 744 10 157 ($R_{int} = 0$. 9610 ($F > 4\sigma$) 10 157 614 $R_1 = 0.0499$ $wR_2 = 0.1372$ $R_1 = 0.0527$ $wR_2 = 0.1425$ 1.113	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 -25 $\leq h \leq 28$ -9 $\leq k \leq 9$ -20 $\leq l \leq 18$ 18 897 2940 (<i>R</i> _{int} = 0.0352) 2829 (<i>F</i> > 4 σ) 2940 266 <i>R</i> ₁ = 0.0373 <i>wR</i> ₂ = 0.0873 <i>R</i> ₁ = 0.0398 <i>wR</i> ₂ = 0.0889 1.180	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic P2 ₁ /c 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 $\leq h \leq 15$ -12 $\leq k \leq 12$ -21 $\leq l \leq 20$ 19 738 4230 (R _{int} = 0.0284) 4080 (F > 4 σ) 4230 410 R ₁ = 0.0361 wR ₂ = 0.0897 R ₁ = 0.0379 wR ₂ = 0.0909 1.090
empirical formula formula weight crystal class space group <i>Z</i> <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg <i>β</i> , deg <i>γ</i> , deg	$\begin{array}{c} \mathrm{PtC}_{53}\mathrm{B}_{7}\mathrm{H}_{53}\mathrm{P}_{3}\\ \mathrm{1053.62}\\ \mathrm{triclinic}\\ P\overline{1}\\ 2\\ 12.9520(3)\\ \mathrm{18.3819(4)}\\ \mathrm{11.2556(3)}\\ 92.702(2)\\ \mathrm{114.316(1)}\\ \mathrm{81.214(2)}\\ 24\mathrm{13.01(10)}\\ 30.43\\ 0.32\times0.22\times0.\\ \mathrm{1.450}\\ \mathrm{1058}\\ 5.26-54.96\\ -\mathrm{16}\leq h\leq 15\\ -23\leq k\leq 23\\ -\mathrm{14}\leq l\leq 14\\ 25744\\ \mathrm{10}\ 157\ (R_{\mathrm{int}}=0.\\ 96\mathrm{10}\ (F>4\sigma)\\ \mathrm{10}\ 157\\ \end{array}$	07 0382)	CoC ₁₃ B ₇ H ₁₉ P 340.85 orthorhombic <i>Pbcn</i> 8 23.4553(2) 7.9746(1) 17.2053(2) 3218.19(6) 11.50 0.32 × 0.25 × 0.08 1.407 1392 5.04-50.7 $-25 \le h \le 28$ $-9 \le k \le 9$ $-20 \le l \le 18$ 18 897 2940 (<i>R</i> _{int} = 0.0352) 2829 (<i>F</i> > 4 σ) 2940 266 <i>R</i> ₁ = 0.0373 <i>wR</i> ₂ = 0.0873 <i>R</i> ₁ = 0.0398 <i>wR</i> ₂ = 0.0889 1.180 +0.302, -0.308	NiC ₁₆ B ₁₄ H ₂₈ P ₂ 492.37 monoclinic P2 ₁ /c 4 13.0466(2) 10.5141(2) 17.7492(2) 90.271(1) 2434.69(7) 9.34 0.42 × 0.26 × 0.24 1.343 1008 5.48-50.68 -15 $\leq h \leq 15$ -12 $\leq k \leq 12$ -21 $\leq l \leq 20$ 19 738 4230 (R _{int} = 0.0284) 4080 (F > 4 σ) 4230 410 R ₁ = 0.0361 wR ₂ = 0.0897 R ₁ = 0.0379 wR ₂ = 0.0909 1.090 +0.255, -0.462

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = \{\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}\}^{1/2}.$ b GOF = $\{\sum w(F_{o}^{2} - F_{c}^{2})^{2} / (n-p)\}^{1/2}$, where $n = \text{no. of reflections and } p = \text{no. of reflection$

If, as in other phosphapolyboranes, 1,18 the RP unit is a four-electron donor to the cage, then 1 and 2 each have 26

skeletal electrons and should adopt a 10-vertex *arachno*geometry (n + 3 skeletal electron pairs),¹⁹ based on an icosahedron minus two vertexes. As diagramed in Figure 1, depending on how insertion of the RP unit into the skeletal framework of the *arachno*-4,5-C₂B₇H₁₃ and *arachno*-4,6-C₂B₇H₁₃ occurs,

 ^{(18) (}a) Getman, T. D.; Deng, H.-B.; Hsu, L.-Y.; Shore, S. G. Inorg. Chem. 1989, 28, 3612–3616. (b) Jutzi, P.; Wegener, D.; Hursthouse, M. J. Organomet. Chem. 1991, 418, 277–289.

Figure 1. Possible geometric isomers of 6-R-*arachno*-PC₂B₇H₁₁ derived from *arachno*-4,5-C₂B₇H₁₃ and *arachno*-4,6-C₂B₇H₁₃.

a number of different geometric isomers could result. Thus, for the *arachno*-4,5-C₂B₇H₁₃ carborane, three isomers are possible resulting from insertion at the B7–B8–B9, C5–B6–B7, or B9–C4–C5 positions to respectively yield the 6-R-*arachno*-6,8,9-PC₂B₇H₁₁ (**I**), 6-R-*arachno*-6,5,10-PC₂B₇H₁₁ (**II**), or 6-R-*arachno*-6,4,7-PC₂B₇H₁₁ (**III**) isomers. Because of the *C_s* symmetry of the *arachno*-4,6-C₂B₇H₁₃ carborane, only two isomeric products are possible. Thus, insertion at either C6–B7–B8 or B8–B9–C4 yields the two enantiomeric forms of the same 6-R-*arachno*-6,7,9-PC₂B₇H₁₁ geometric isomer (**IV**), whereas insertion at the position spanning C4–B5–C6 yields the *C_s*-symmetric 6-R-*arachno*-6,5,7-PC₂B₇H₁₁ (**V**).

Density functional theory (DFT) calculations at the B3LYP/ 6-311G* level for the five isomers yielded the optimized molecular geometries shown in Figure 2. The 6-Me-*arachno*- $6,8,9-PC_2B_7H_{11}$ (I) structure is of lowest energy, in agreement with the known tendency of electron-rich heteroatoms, such as phosphorus and carbon, to favor the lowest-coordinate positions (i.e., the 6- and 9-position) on the open face of a polyhedral

Figure 2. DFT calculated optimized geometries and relative energies for isomeric 6-R-*arachno*-PC₂B₇H₁₁ structures.

framework.^{16a,20} Only slightly higher in energy (0.2 kcal/mol) is the 6-Me-*arachno*-6,7,9-PC₂B₇H₁₁ isomer (IV), which also has the phosphorus and one carbon located in the low-coordinate 6- and 9-position but has the second carbon in the facial 7-position adjacent to the phosphorus rather than the carbonadjacent 8-position in I. In the 6-Me-arachno-6,5,10-PC₂B₇H₁₁ (II) and 6-Me-arachno-6,5,7-PC₂ B_7H_{11} (V) isomers, the phosphorus is again in the 6-position, but the carbon atoms in each compound are located in unfavorable higher-coordinate positions (C5, C10 and C5, C7, respectively). The higher energy of the V structure (17.4 kcal/mol), where P6 is connected to two carbons and one boron, compared to that of II (16.6 kcal/mol), where P6 is connected to two borons and one carbon, is consistent with the tendency of the most electron-rich heteroatoms in a cage to favor bonding interactions with electronpoor neighbors.^{16a,20} As expected based on the unfavorable location of one of the carbons in the high-coordinate 4-position of the cage skeleton, the 6-R-*arachno*-6,4,7-PC₂B₇H₁₁ (III) isomer was found to be of highest energy (29.5 kcal/mol).

Single-crystal X-ray diffraction determinations (Figure 3a and b) established that compound **1a** adopts the thermodynamically favored 6-Ph-*arachno*-6,8,9-PC₂B₇H₁₁ structure (Ph derivative of **I**), while **2a** adopts the higher energy 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ structure (Ph derivative of **V**). The phosphorus atoms in both compounds are located in the low-coordinate 6-position, but the carbon and the bridge and/or *endo*-hydrogen atoms in the two isomers are found in different locations. In **1a**, one carbon is present in the favored low-coordinate 9-position, while

^{(19) (}a) Williams, R. E. Inorg. Chem. 1971, 10, 210–214. (b) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1–66. (c) Williams, R. E. Chem. Rev. 1992, 92, 177–207. (d) Rudolph, R. W.; Thompson, D. A. Inorg. Chem. 1974, 13, 2779–2782. (d) Williams, R. E. In Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; Wiley: New York, 1991; pp 11–93.

⁽²⁰⁾ Williams, R. E. Adv. Inorg. Chem. Radiochem. 1976, 18, 67-142.

the other carbon is found in the adjacent higher-coordinate 8-position. There is an endo-hydrogen at the C9 carbon and a hydrogen bridging the B5-B10 edge. In 2a, the two carbons are nonadjacent and are situated in the higher-coordinate cage positions adjacent to the phosphorus, with bridge-hydrogens present at the B9-B8 and B9-B10 edges. The observed bond distances and angles fall into the normal ranges; however, there are some differences between the two compounds that can be related to their different donor properties. As discussed later, in contrast to 1a, 2a shows donor properties consistent with a lone pair of electrons localized at the endo-P6 position. Consistent with this observation, the B4–P6–C11 $(87.04(10)^{\circ})$, C5-P6-C11 (106.44(11)°), C7-P6-C11 (105.08(10)°), and C5-P6-C7 (86.18(10)°) bond angles in **2a** are considerably more acute than the comparable B4-P6-C11 (97.50(13)°), B5-P6-C11 (113.05(14)°), B7-P6-C11 (113.6(2)°), and B5-P6-B7 $(95.7(2)^{\circ})$ angles in **1a**, suggesting that in **2a** the P6-C11 bond is being repelled by the P6 lone pair. In 2a, the P6-C11 (1.839(2) Å) and P6-B4 (2.208(3) Å) bond distances are also significantly longer than the comparable distances in 1a (P6-C11 (1.820(3) Å) and P6-B4 (2.050(3) Å) probably as a result of the shorter P6-C5 (1.885(2) Å) and P6-C7 (1.888(2) Å) bonds in **2a** relative to the P6–B5 (1.986(4) Å) and P6–B7 (1.984(4) Å) bonds in **1a**.

The spectroscopic properties for compounds **1a,b** and **2a,b** are consistent with both the crystallographically determined structures and with the results of the DFT/GIAO chemical shift calculations (Table 1). Thus, the ¹¹B NMR spectral patterns of **1a,b** indicate C_1 cage-symmetry, while those of **2a,b** indicate C_S symmetry, with the DFT/GIAO calculated values and assignments for structures **I** and **V** closely matching those experimentally determined in the two-dimensional COSY ¹¹B-¹¹B NMR studies of **1a** and **2a** (Table 1). Likewise, in the **1a** ¹¹B NMR spectra, the resonances near -12 and -20 ppm clearly show bridge-hydrogen couplings consistent with their calculated assignments to the B5 and B10 borons.

In addition to their respective Ph or Me resonances, the ¹H NMR spectra of **1a** and **1b** show the expected seven terminal BH, an intensity-one bridge-hydrogen, and three cage-CH resonances with one of the cage-CH resonances in both compounds occurring at the high field (-0.72 ppm, **1a**; -0.90 ppm, **1b**) characteristic of an *endo*-hydrogen of a cage-CH₂ group.²¹ The ¹H NMR spectra of **2a** and **2b** showed, in addition to their terminal BH and respective phenyl or methyl resonances, intensity-two bridge-hydrogen and cage-CH resonances.

The calculated ¹³C and ³¹P chemical shifts for **I** and **V** (and their Ph-analogues) match well with the experimentally determined values for **1a,b** and **2a,b**. The $J^{13}C^{-31}P$ values observed in these compounds deserve special comment. The room temperature ¹H-decoupled ¹³C NMR spectra of **2a,b** contained a single resonance with a multiplet structure arising from both boron and phosphorus coupling. When the temperature was lowered to $-83^{\circ}C$ to thermally decouple ¹¹B interactions,²² this resonance resolved into a sharp doublet with the magnitude of the phosphorus–carbon coupling ($J^{13}C^{-31}P$ 55 Hz, **2a** and 52 Hz,

Figure 3. (a) ORTEP drawing of 6-Ph-*arachno*-6,8,9-PC₂B₇H₁₁ (1a). Selected bond distances (Å) and angles (deg): B5-P6, 1.986(4); P6-B7, 1.984(4); B7-C8, 1.721(6); C8-C9, 1.660(8); C9-B10, 1.660(7); B10-B5, 1.714(5); P6-C11, 1.820(3); P6-B4, 2.050(3); B4-P6-C11, 97.50(13); B5-P6-C11, 113.05(14); B7-P6-C11, 113.6(2); B5-P6-B7, 95.7(2). (b) ORTEP drawing of 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (2a). Selected bond distances (Å) and angles (deg): C5-P6, 1.885(2); P6-C7, 1.888(2); C7-B8, 1.635(4); B8-B9, 1.825(5); B9-B10, 1.830(5); B10-C5; 1.636(4); P6-C11, 1.839(2); P6-B4, 2.208(3); B4-P6-C11, 87.04(10); C5-P6-C11, 106.44(11); C7-P6-C11, 105.08(10); C5-P6-C7, 86.18(10).

2b) being consistent with the adjacent positions of the carbon (C5,7) and phosphorus (P6) atoms. The ¹³C NMR spectra of 1a and 1b showed the expected two cage-carbon resonances, one of which appeared as a triplet of doublets and the other as a doublet, consistent with the C9-H₂ and C8-H cage units, respectively. Surprisingly, given its location on the opposite side of the cage from the P6 atom, the C9-carbon exhibited significant carbon-phosphorus coupling $(J_{13}C^{-31}P 49 \text{ Hz}, 1a \text{ and } 1a)$ 43 Hz, **1b**). These values are close to normal ${}^{2}J_{CP}$ or ${}^{1}J_{CP}$ coupling values,²³ such as discussed above for the ${}^{1}J_{CP}$ coupling value found for phosphorus-adjacent C5,7-carbons in compounds 2a,b. An examination of the crystallographically determined structure of 1a shown in Figure 3 reveals that the P6-H9 distance (2.49(4) Å) is shorter that the van der Waals radii of phosphorus and hydrogen (3.1 Å). As shown in Figure 4a, DFT calculations on Ia also showed that there is significant interaction of electrons localized at the endo-P6 position and the endo-C9-H hydrogen in the HOMO. This suggests an intramolecular C9-H9-P6 hydrogen-bonding interaction in **1a,b** as the mechanism for the $J_{{}^{13}C9-{}^{31}P6}$ coupling observed in the ¹³C NMR spectra of these compounds.

When the progress of the reaction given in eq 2 was monitored by ¹¹B NMR spectroscopy, no intermediate species were observed. However, when the reaction in eq 1 leading to **1a** was monitored, an intermediate anionic species was observed after addition of PhPCl₂ and excess Proton Sponge. The ¹¹B NMR spectrum of this intermediate anion is in good agreement

⁽²¹⁾ Kang, S. O.; Furst, G. T.; Sneddon, L. G. Inorg. Chem. 1989, 28, 2339– 2347 and references therein.

^{(22) (}a) Wrackmeyer, B. In *Progress in NMR Spectroscopy*; Emsley, J. W., Feeney, J., Sutcliffe, L. H., Eds.; Pergamon: New York, 1979; Vol. 12, pp 227–259. (b) Gragg, B. R.; Layton, W. J.; Niedenzu, K. *J. Organomet. Chem.* **1977**, *132*, 29–36.

⁽²³⁾ Quin, L. D. In Phosphorus-31 NMR Spectroscopy in Stereochemical Anaylsis; Verkade, J. G.; Quin, L. D., Eds.; VCH: New York, 1987; Chapter 12.

Figure 4. HOMO density surfaces for (a) 6-Ph-*arachno*-6,8,9-PC₂B₇H₁₁ (Ia) and (b) 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (Va).

Figure 5. DFT optimized geometry II^- for the 6-R-*arachno*-6,5,10-PC₂B₇H₁₀⁻ anion. Selected bond distances (Å) and angles (deg): P6–B4, 2.162; C5–P6, 1.891; P6–B7, 2.015; P6–C11, 1.904; C5–C10, 1.526; C5–P6–B7, 90.1; B4–P6–C11, 88.1; C5–P6–C11, 102.9; B7–P6–C11, 112.7.

with the DFT/GIAO calculated chemical shifts (Table 1) for that of the 6-R-*arachno*-6,5,10-PC₂B₇H₁₀⁻ anion (**II**⁻, Figure 5). Protonation of this anion would then be expected to produce neutral 6-R-*arachno*-6,5,10-PC₂B₇H₁₁ having structure **II** shown in Figure 2. However, owing to its unfavorable carbon locations, **II** is 16.6 kcal/mol higher in energy than **I**, and indeed, it was found that when the intermediate 6-R-*arachno*-6,5,10-PC₂B₇H₁₀⁻ (with structure **II**⁻) was protonated with HCl·OEt₂, 6-R*arachno*-6,8,9-PC₂B₇H₁₁ (**1**) with structure **I**, rather than **II**, was produced.

The formation of the structures established for 6-R-*arachno*-6,8,9-PC₂B₇H₁₁ (**1**, Figure 3a) and 6-R-*arachno*-6,5,7-PC₂B₇-H11 (**2**, Figure 3b) by the reactions given in eqs 1 and 2 can be envisioned to have resulted from a series of substitution/ dehydrohalogenation steps.^{16b} Initial deprotonation of *arachno*-4,5-C₂B₇H₁₃ has been shown to occur at the *endo*-C5-H.²⁴

Figure 6. Possible reaction steps leading to the formation of 6-R-*arachno*-6,8,9-PC₂B₇H₁₁ (1).

Reaction of the resulting *arachno*-4,5- $C_2B_7H_{12}^-$ anion with RPCl₂ would then reasonably result in the formation of 5-RPCl*arachno*-4,5- $C_2B_7H_{12}$ (**A**, Figure 6), in which the RPCl– group is substituted at C5. A subsequent B6–B7 bridge-hydrogen deprotonation–dehydrohalogenation involving a second equivalent of Proton Sponge would result in phosphorus cage insertion to yield **B**, which, in the presence of the of excess Proton Sponge, would deprotonate to the 6-R-*arachno*-6,5,10-PC₂B₇H₁₀⁻ anion (**C**) (having structure **II**⁻) that was observed by ¹¹B NMR spectroscopy. Acidification of **C** (**II**⁻) then results in cage rearrangement to generate the final product **1** (with structure **I**).

Deprotonation of the *arachno*-4,6-C₂B₇H₁₃ carborane has also been previously shown to occur at the *endo*-C4–H to produce the *arachno*-4,6-C₂B₇H₁₂⁻ anion having the negative charge largely localized on the C4 carbon.²⁵ A metathesis reaction of this anion with RPCl₂ could then yield a 4-RPCl-*arachno*-4,6-C₂B₇H₁₂ derivative **D** (Figure 7). Deprotonation of the acidic *endo*-C6–H of **D** by an additional equivalent of Proton Sponge, followed by dehydrohalogenation, then leads in a straightforward manner to the structure (**V**) observed for 6-R-*arachno*-6,5,7-PC₂B₇H₁₁ (**2**) having the phosphorus inserted between the two carbons.

Even though the DFT calculations show that structure V is considerably higher in energy, the isomerization of 2 to 1 (with the more stable structure I) was not observed even after being heated at 90 °C in DME for 2 days.

Reactions of 6-R-*arachno*-6,8,9-PC₂B₇H₁₁ (1) and 6-R*arachno*-6,5,7-PC₂B₇H₁₁ (2) with BH₃·THF, S₈, and H₂O₂. The insertion of electron-rich elements, such as phosphorus, into a boron cluster normally results in the formation of a compound having a formal lone pair of electrons associated with the heteroatom. Because of the extensive electron delocalization in

⁽²⁴⁾ Jelìnek, T.; Holub, J.; Stíbr, B.; Fontaine, X. L. R.; Kennedy, J. D. Collect. Czech. Chem. Commun. 1994, 59, 1584–1595.

 ^{(25) (}a) Tebbe, F. N.; Garrett, P. M.; Hawthorne, M. F. J. Am. Chem. Soc. 1968, 90, 869–879. (b) Kadlecek, D. E.; Hong, D.; Carroll, P. J.; Sneddon, L. G. In preparation.

Figure 7. Possible reaction steps leading to the formation of 6-R-*arachno*-6,5,7-PC₂B₇H₁₁ (2).

polyhedral boron clusters, these heteroatom lone pairs are usually delocalized and have low Lewis basicity.¹ However, we have recently found that the 10-vertex phosphamonocarbaborane anion *exo*-6-R-*arachno*-6,7-PCB₈H₁₁⁻ shows strong donor properties arising from a phosphorus-localized lone pair of electrons.² The 6-R-*arachno*-6,8,9-PC₂B₇H₁₁ (1) and 6-R*arachno*-6,5,7-PC₂B₇H₁₁ (2) phosphadicarbaboranes are isoelectronic with the *exo*-6-R-*arachno*-6,7-PCB₈H₁₁⁻ anion and have similar 10-vertex *arachno*-structures in which their phosphorus atoms occupy the 6-position in the cage. DFT calculations on the HOMO density surfaces (Figure 4) revealed that both **Ia** (1a) and **Va** (2a) have significant electron density localized at their *endo*-phosphorus positions. These observations prompted our investigations of the reactions of 1a and 2a with Lewis acids to see if they would exhibit donor properties.

It was found that **1a** does not react with BH_3 ·THF, but when **2a** was mixed with BH_3 ·THF in THF, an equilibrium mixture containing both **2a** and *endo*-6-H₃B*-exo*-6-Ph*-arachno*-6,5,7-PC₂B₇H₁₁ (**3**) was immediately established (eq 3).

6-Ph-arachno-6,5,7-PC₂B₇H₁₁ + BH₃·THF
$$\stackrel{-\text{THF}}{=}$$

2a
endo-6-H₃B-exo-6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (3)

THE

3 could not be isolated in a pure form since, upon vacuum removal of solvent, complete dissociation of the BH3 occurred and only free 2a was observed. However, Figure 8 shows a ¹H-decoupled ¹¹B NMR spectrum taken for the reaction of **2a** and BH₃·THF where the peaks of free 2a (∇) and the new 3 (\bullet) are marked accordingly. The GIAO calculated shifts for the DFT optimized geometry VI shown in Figure 9a with the BH3 bound at the endo-P6 position are in excellent agreement with the ¹¹B NMR spectrum observed for **3**. Although the relative ratio of 3 to 2a increased as the amount of initial BH₃·THF was increased, complete formation of 3 could not be reached even in the presence of a large excess of BH₃•THF. Based on integrations of the relative peak intensities of the -21.6 ppm peak of **3** and the -33.0 ppm peak of **2a** in a series of equilibrium mixtures of 2a, 3, and BH₃·THF (Table 2), the equilibrium constant K_{eq} was obtained as ~4 at room temperature in THF solution ($K_{eq} = [3]/[2a][BH_3 \cdot THF]$), and ΔG was crudely estimated as -3 kJ/mol.

Figure 8. ¹¹B{¹H} NMR spectrum (64.2 MHz) for the reaction of **2a** with BH₃·THF, with species marked as **3** (\bullet); **2a** (\bigtriangledown); BH₃·THF (a); and BH₃ group of **3** (b).

The calculated P6–BH₃ bond distance in **3** of 1.959 Å is longer than that found for Ph₃P•BH₃ (1.93(1) and 1.90(2) Å)²⁶ but shorter than the corresponding P–BH₃ distance of 1.988 Å calculated for *endo*-6-BH₃-*exo*-6-Ph-*arachno*-6,7-PCB₈H₁₁^{-2a}

As mentioned above, in addition to forming a complex with BH₃, the *exo*-6-R-*arachno*-6,7-PCB₈H₁₁⁻ anion was found to react with S₈ and O₂ to form the *endo*-6-S-*exo*-6-Ph-*arachno*-6,7-PCB₈H₁₁⁻ and *endo*-6-O-*exo*-6-Ph-*arachno*-6,7-PCB₈H₁₁⁻ adducts.^{2a} In contrast, the 6-Ph-*arachno*-6,8,9-PC₂B₇H₁₁ (**1a**) did not react with S₈ and was completely decomposed to borates by hydrogen peroxide. However, in its reactions with S₈ and hydrogen peroxide, 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (**2a**) formed *endo*-6-S-*exo*-6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (**4**, eq 4) and *endo*-6-O-*exo*-6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (**5**, eq 5).

6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁
$$\xrightarrow{1/_8S_8}$$

endo-6-S-exo-6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (4)
$$\mathbf{4}$$

6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ $\xrightarrow{\text{H}_2\text{O}_2}$

endo-6-O-exo-6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (5)
$$\mathbf{5}$$

The ¹¹B NMR spectra of **4** and **5** are quite similar, each showing five boron resonances at similar chemical shift values in 1:2:2:1:1 intensity ratios indicating C_s symmetry. The GIAO calculated chemical shifts for the DFT optimized geometries **VII** and **VIII** (Figure 9b and c) are in good accordance with the experimental data for **4** and **5** (Table 1). In both **4** (**VII**) and **5** (**VIII**), the sulfur and the oxygen atoms are located at the *endo*-P6 position with bridge-hydrogens at the B8–B9 and B9–B10 edges. The calculated values of the P6–S (1.970 Å) distance in **VII**, and the P6–O distance (1.495 Å) in **VIII** are

⁽²⁶⁾ There are two independent molecules in the unit cell; see: Huffman, J. C.; Skupinski, W. A.; Caulton, K. G. Cryst. Struct. Commun. 1982, 11, 1435– 1440

Figure 9. DFT optimized geometries: (a) **VI** for *endo*-6-BH₃-*exo*-6-Ph*arachno*-6,5,7-PC₂B₇H₁₁ (3), (b) **VII** for *endo*-6-S-*exo*-6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (4), and (c) **VIII** for *endo*-6-O-*exo*-6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (5). Selected bond distances (Å) and angles (deg): (**VI**) P6–BH₃, 1.959; P6–C11, 1.838; C5–P6, 1.871; P6–C7, 1.864; C7–B8, 1.660; B8–B9, 1.810; B9–B10, 1.810; B10–C5, 1.660; P6–B4, 2.260; BH₃–P6–C11; 106.5; B4–P6–C11, 89.7; B4–P6–BH₃, 163.8; C5–P6–BH₃, 123.2; C7– P6–BH₃, 123.6; (**VII**) P6–S17, 1.970; P6–C11, 1.833; C5–P6, 1.858; P6–C7, 1.867; C7–B8, 1.680; B8–B9, 1.800; B9–B10, 1.800; B10–C5, 1.680; P6–B4, 2.280; S17–P6–C11, 109.8; B4–P6–C11, 90.7; B4–P6– S17, 159.5; C5–P6–S17, 121.6; C7–P6–S17, 121.1; (**VIII**) P6–O17, 1.495; P6–C11, 1.802; C5–P6, 1.852; P6–C7, 1.841; C7–B8, 1.690; B8– B9, 1.800; B9–B10, 1.800; B10–C5, 1.690; P6–B4, 2.282; O17–P6– C11, 109.1; B4–P6–C11, 95.8; B4–P6–O17, 155.0; C5–P6–O17, 117.9; C7–P6–O17, 120.5.

comparable to the P–S and P–O distances that have been observed in phosphine sulfides²⁷ and phosphine oxides,²⁸ respectively, but are shorter than those calculated^{2a} for the analogous distances in the *endo*-6-S-*exo*-6-Ph-*arachno*-6,7-PCB₈H₁₁⁻ (P–S, 2.030 Å) and *endo*-6-O-*exo*-6-Ph-*arachno*-6,7-PCB₈H₁₁⁻ (P–O, 1.520 Å) compounds.

Figure 10. DFT calculated optimized geometry **IX** for $\mu_{7.8}$ -{HS(Ph)P}*hypho*-7,8-C₂B₆H₁₁ (**6**). Selected bond distances (Å) and angles (deg): P9– C7, 1.774; P9–C8, 1.770; P9–S10, 2.144; P9–C11, 1.823; B2–C7, 1.627; B6–C7, 1.604; B5–B6, 1.790; B5–B4, 1.790; B4–C8, 1.600; B3–C8, 1.620; C7–P9–C8, 104.3; C7–P9–S10, 114.2; C8–P9–S10, 114.6; S10– P9–C11, 100.3; B2–C7–P9, 105.5; B3–B2–C7, 107.8; B2–B3–C8, 107.6; B3–C8–P9, 105.7; B4–C8–P9, 116.4; B6–C7–P9, 117.1.

While the reaction of 2a with 1 equiv of sulfur afforded 4, in the presence of a large excess of S_8 , 2a yielded 6 (eq 6).

6-Ph-arachno-6,5,7-PC₂B₇H₁₁
$$\xrightarrow{\text{xs S}_8}_{-B}$$

2a
 $\mu_{7,8}$ -{HS(Ph)P}-hypho-7,8-C₂B₆H₁₁ (6)

Compound **6** was obtained as a yellow oil in 52% yield, and its composition was established by high-resolution mass spectroscopy. In its ¹¹B NMR spectrum, **6** exhibited a C_s -symmetric pattern of four resonances in 2:1:2:1 ratios consistent with the loss of one cage-boron atom from **2a**. The resonance at -25.3 ppm showed an additional fine-structure characteristic of coupling to two bridge-hydrogens. In its ¹H NMR spectrum, **6** showed two different sets of bridge-hydrogens in a 2:1 intensity ratio with the intensity-one resonance exhibiting coupling (³*J*_{PH} = 35 Hz) to the phosphorus. The ¹³C NMR spectrum of **6** showed one broad cage-carbon resonance. The single resonance observed in the ³¹P NMR spectrum was found in a chemical shift region significantly downfield from those found for compounds **1**–**5**.

The GIAO calculated chemical shifts for the DFT optimized geometry IX shown in Figure 10 are in excellent agreement with the experimental NMR data for 6. The compound has a structure related to that of 4 and can be envisioned to have been formed from structure VII (Figure 9) by both removal of the B4 cage atom and protonation of the endo-sulfur to produce the thiol group bound at the phosphorus endo-position of IX (6). The angles around the phosphorus are reasonably tetrahedral S10-P9-C11 (100.3°); S10-P9-C7 (114.2°); S10-P9-C8 (114.6°) , and C7-P9-C8 (104.3°) . The P9-C7 (1.774 Å) and P9-C8 (1.770 Å) are distances shorter than that of the exopolyhedral P9–C11 (1.823 Å). The calculated P–SH distance of (2.144 Å) is longer than the P–S distance calculated in VII (1.970 Å), and this difference is consistent with the longer P-SH (2.077(1) Å) versus P-S (1.954(1) Å) distances observed in Ph₂P(S)SH.²⁹

The **IX** structure established for **6** can be viewed in at least two different ways. If the phosphorus is considered as a cage atom, then the cluster would be a nine-vertex, 26 skeletal electron system (n + 4 skeleton electron pairs) and should adopt a *hypho*-type structure that can be derived from an icosahedron

^{(27) (}a) Codding, P. W.; Kerr, K. A. Acta Crystallogr. 1978, B34, 3785–3787.
(b) Alder, M. J.; Cross, W. I.; Flower, K. R.; Pritchard, R. G. J. Chem. Soc., Dalton Trans. 1999, 2563–2573. (c) Piccinni-Leopardi, C.; Germain, G.; Declercq, J. P.; Van Meerssche, M.; Robert, J. B.; Jurkschat, K. Acta Crystallogr. 1982, B38, 2197–2199. (d) Grim, S. O.; Gilardi, R. D.; Sangokoca, S. A. Angew. Chem., Int. Ed. Engl. 1983, 22, 254–255. (e) Dreissig, V. W.; Plieth, K.; Zäske, P. Acta Crystallogr. 1972, B28, 3473–3477.

^{(28) (}a) Baures, P. W.; Silverton, J. V. Acta Crystallogr. 1990, C46, 715-717.
(b) Galdecki, Z.; Grochulski, P.; Luciak, B.; Wawrzak, Z.; Duax, W. L. Acta Crystallogr. 1984, C40, 1197-1198. (c) Mikolajczyk, M.; Graczyk, P. P.; Wieczorek, M. W.; Bujacz, G. Tetrahedron 1992, 48, 4209-4230.
(d) Cameron, T. S.; Dahlèn, B. J. Chem. Soc., Perkin Trans. 2 1975, 1737-1751. (e) Bandoli, G.; Bortolozzo, G.; Clemente, D. A.; Croatto, U.; Panattoni, C. J. Chem. Soc. A 1970, 2778-2780.

⁽²⁹⁾ Krebs, B.; Henkel, G. Z. Anorg. Allg. Chem. 1981, 475, 143-155.

by removing three vertexes. The structure in Figure 10 can be generated in this manner and is quite similar to those observed for other 9-vertex hypho-class compounds, including hypho-1-CH₂-2,5-S₂B₆H₈, hypho-2,5-S₂B₇H₁₀⁻, hypho-2,5-S₂B₇H₁₁, and *hypho*-1-(NCCH₂)-1,2,5-C₃B₆H₁₂^{-,30,31} On the other hand, given the tetrahedral configuration of the phosphorus, the HS(Ph)P unit could be considered to be a "classical" fragment bridging the C7 and C8 carbons of the $C_2B_6H_{11}$ dicarbaborane fragment. In this case, the PhP(SH) would be considered to donate three electrons to the cage by forming one normal σ -bond and one dative bond with the C7 and C8 cage carbons. The resulting 8-vertex C₂B₆-framework of the $\mu_{7,8}$ -{HS(Ph)P}-hypho-7,8-C₂B₆H₁₁ cluster would have 24 skeletal electrons and should therefore adopt a hypho-type geometry that is derived by removing three vertexes from an octadecahedron.¹⁹ The C₂B₆framework proposed for 6 in Figure 10 is, in fact, entirely consistent with those found for other isoelectronic 8-vertex hypho-clusters, including hypho-C2B6H13⁻, hypho-S2B6H9⁻, and 2,3-Me₂-hypho-S₂B₆H₈.^{30,32}

Coordination Chemistry of 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ (2a). The reaction of 2a and PtBr₂ afforded *cis*-(η^1 -[6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁])₂PtBr₂ (7, eq 7).

2 6-Ph-arachno-6,5,7-PC₂B₇H₁₁ + PtBr₂
$$\rightarrow$$

2a
 $cis - (\eta^{1} - [6-Ph-arachno-6,5,7-PC_{2}B_{7}H_{11}])_{2}PtBr_{2}$ (7)
7

A single-crystal X-ray diffraction study established the structure shown in Figure 11. Since there were no significant structural differences, only one of the two independent molecules is shown in the figure. The complex contains two cis-coordinated 6-Ph-arachno-6,5,7-PC₂B₇H₁₁ (2a) cages that are each bound to the platinum center in an η^1 fashion at the *endo*-position of the cage phosphorus P6. The geometry around the Pt(II) is a slightly distorted square plane, with the P-Pt-P angle (95.61(7)°) being wider than Br-Pt-Br (87.38(3)°) owing to the greater steric requirements of the bulky cages. The Pt-P bond distances (2.254(2) and 2.268(2) Å) and Pt-Br distances (2.4675(9) and 2.4687(9) Å) are comparable to those found in *cis*-coordinated bis(phosphine)platinumdibromide complexes, such as cis-[Ph2-PNHP(O)Ph₂P]₂PtBr₂, (Pt-P (2.241(5), 2.248(4) Å); Pt-Br (2.472(2), 2.480(2) Å).³³ There is little change in the cage structure upon coordination, with P6-C5 (1.823(8), 1.845(8))Å) and P6-C7 (1.839(9), 1.852(8) Å) in 7 being somewhat shorter than the corresponding P6-C5 (1.885(2) Å; P6-C7 (1.888(2) Å) distances in **2a**.

The ¹¹B NMR spectrum of **7** showed seven overlapping resonances, and its ¹³C NMR spectrum exhibited only one broad cage-carbon resonance. However, surprisingly, even when pure crystals of **7** were dissolved, both the ³¹P and ¹H NMR spectra indicated the presence of another species in solution. Thus, the ³¹P NMR spectrum showed two resonances at similar chemical shifts (-5.2 and -8.8 ppm) in an approximate 85:15 ratio intensity with both resonances exhibiting ³¹P-¹⁹⁵Pt values (J_{PT-P} ,

Figure 11. ORTEP drawing of *cis*- $(\eta^{1}-[6-Ph-arachno-6,5,7-PC_2B_7H_1])_2$ -PtBr₂ (7). Selected bond distances (Å) and angles (deg): Pt-P6a, 2.254(2); Pt-P6b, 2.268(2); Pt-Br1, 2.4675(9); Pt-Br2, 2.4687(9); P6a-C11a, 1.823(9); P6a-C5a, 1.823(8); P6a-C7a, 1.839(9); P6a-B4a, 2.221(9); C5a-B10a; 1.684(13); C7a-B8a, 1.686(14); B8a-B9a, 1.814(18); B9a-B10a, 1.825(18); P6b-C11b, 1.777(9); P6b-C5b, 1.846(9); P6b-C7b, 1.852(9); P6b-B4b, 2.235(11); C5b-B10b, 1.702(15); C7b-B8b, 1.686(15); B8b-B9b, 1.814(18); B9b-B10b, 1.747(18); P6a-Pt-P6b, 95.61(7); Br1-Pt-B72, 87.38(3); P6a-Pt-B2, 86.91(6); P6b-Pt-Br1, 89.86(6); C11a-P6a-B4a, 90.2(4); Pt-P6a-C11a, 104.6(3); Pt-P6a-C5a, 125.0(3); Pt-P6a-C7a, 122.5(3); C11b-P6b-B4b, 88.7(4); Pt-P6b-C11b, 108.7(3); Pt-P6b-C5b, 120.9(3); Pt-P6b-C7b, 123.2(3).

Figure 12. Possible rotomers of 7 in solution.

3010 and 3010 Hz) characteristic of *cis*-coordination.³⁴ Likewise, the ¹H NMR spectrum showed two different bridge-hydrogen and two different CH resonances. The question then arises as to why two species are observed in solution but only one is observed in the solid state. One possible explanation is that the two rotamers shown in Figure 12, where **2a** is rotated about the Pt-P axis, exist in solution, while, in the solid state, only rotamer **A** (i.e., **7**) is present. In solution, there should be little difference in the energies of the two isomers, but, in the solid state, the structure observed for **7** could be favored owing to $\pi-\pi$ interactions of the phenyl rings. Thus, as seen in Figure

⁽³⁰⁾ Kang, S. O.; Sneddon, L. G. J. Am. Chem. Soc. 1989, 111, 3281–3289.
(31) Su, K.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 1993, 115, 10004–10017.

⁽³²⁾ Jelínek, T.; Plesek, J.; Hermánek, S.; Stíbr, B. Main Group Met. Chem. 1987, 10, 397–398.

 ⁽³³⁾ Bhattacharyya, P.; Slawin, A. M. Z.; Smith, M. B.; Woollins, J. D. Inorg. Chem. 1996, 35, 3675–3682.

⁽³⁴⁾ Cis geometry PtX₂(PR₃)₂ compounds exhibit a ¹J_{Pt-P} of 3300-3500 Hz (e.g., *cis*-(Me₃P)₂PtBr₂, 3439) while trans geometries showed a ¹J_{Pt-P} of 2100-2600 Hz (e.g., *trans*-(Me₃P)₂PtBr₂, 2324). (a) Pregosin, P. S. In *Phosphorus-31 NMR Spectroscopy in Stereochemical Anaylsis*; Verkade, J. G., Quin, L. D., Eds.; VCH: New York, 1987; Chapter 14. (b) Goggin, P. L.; Goodfellow, R. J.; Haddock, S. R.; Knight, J. R.; Reed, F. J. S.; Taylor, B. F. *J. Chem. Soc., Dalton Trans*. **1974**, 523-533. (c) Favez, R.; Roulet, R.; Pinkerton, A. A.; Schwarzenbach, D. *Inorg. Chem.* **1980**, *19*, 1356-1365.

Figure 13. ORTEP drawing of *trans*- $(\eta^{1}$ -[6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁])₂-PdBr₂ (**8**). Selected bond distances (Å) and angles (deg): Pd-P6, 2.318(2); Pd-Br, 2.4370(7); P6-C5, 1.813(7); P6-C7, 1.843(7); C7-B8, 1.666(10); B8-B9, 1.829(12); B9-B10, 1.805(11); B10-C5, 1.678(10); P6-B4, 2.206(8); P6-Pd-Br1, 91.90(5); P6-Pd-Br2, 88.10(5); P6-Pd-P6', 180.0; C11-P6-Pd, 105.7(2); C11-P6-C5, 109.1(3); C11-P6-C7, 111.1(3); C11-P6-B4, 93.4(3).

11, the two phenyl rings are in nearly cofacial positions with a dihedral angle of \sim 7° and an interplanar distance of \sim 3.5 Å. These values are quite similar to those that have been observed in other complexes with $\pi - \pi$ interactions between *cis*-coordinated aromatic ligands.³⁵ This $\pi - \pi$ interaction, in addition to the steric interactions of the cage, may also be a contributing factor to the larger P-Pt-P versus Br-Pt-Br bond angle.

The reaction of **2a** and PdBr₂ afforded a product mixture containing at least two products that were inseparable by silica gel chromatography. Although it was possible to crystallize small samples of *trans*-(η^{1} -[6-Ph-*arachno*-6,5,7-PC₂B₇H_{11])2}-PdBr₂ (**8**) from the crude product mixture, it was not possible to isolate other products sufficiently pure to allow characterization.

2 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁ + PdBr₂ →
2a
trans-(
$$\eta^1$$
-[6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁])₂PdBr₂ (8)
8

As shown in eq 8, 8 is formed by the reaction of the palladium dibromide with 2 equiv of **2a**. A single-crystal X-ray diffraction study established the structure shown in Figure 13 in which two η^1 -coordinated **2a** cages adopt a *trans*-geometry at the Pd(II) center, with P6–Pd–Br angles of 91.90(5)° and 88.10(5)° and a 180.0° P6–Pd–P6' angle. The observed Pd–P 2.318(2) Å and Pd–Br 2.4370(7) Å distances are typical of those observed in Pd²⁺ square planar phosphine complexes, such as *trans*-[(C₆H₄Cl)Ph₂P]₂PdBr₂ (Pd–P, 2.350(2) and Pd–Br 2.4232(13) Å).³⁶ The P6–C5 (1.813(7) Å) and P6–C7 (1.843(7) Å)

distances are shorter than those in **2a**, but comparable to those in the Pt complex **7**. The P6–B4 distance (2.206(8) Å) is also similar to that of **7** (2.221(9) Å).

Unlike 2a, 1a did not react with either PtBr₂ or PdBr₂.

Deprotonation Reactions of 1a and 2a. 2a was not deprotonated by either Proton Sponge or NaH (eq 9a). However, according to ¹¹B NMR and computational analysis, when **2a** was reacted with MeLi, a mixture of species was obtained that contained the 6-Ph-*arachno*-6,5,7-PC₂B₇H₁₀⁻ (**2a**⁻) anion as the predominate product. The calculated chemical shifts (-1.8 (2), -2.7 (1), -16.5 (1), -35.2 (1), and -38.7 (2) ppm) for the optimized geometry of 6-Me-*arachno*-6,5,7-PC₂B₇H₁₀⁻ in which one of the two bridge-hydrogens of **2a** was deprotonated gave good agreement with the ¹¹B NMR chemical shifts observed for the major species present in solution.

6-Ph-*arachno*-6,5,7-PC₂B₇H₁₁
$$\xrightarrow{\text{PS}}_{\text{or NaH}}$$
 No reaction (9a)
2a

6-Ph-arachno-6,5,7-PC₂B₇H₁₁
$$\xrightarrow{\text{MeL}_1}$$

2a
6-Ph-arachno-6,5,7-PC₂B₇H₁₀ (9b)

On the other hand, the 6-Ph-*arachno*-6,8,9-PC₂B₇H₁₀⁻ (**1a**⁻) monoanion was cleanly obtained by the reaction of **1a** with Proton Sponge or NaH (eq 10).

6-Ph-*arachno*-6,8,9-PC₂B₇H₁₁
$$\xrightarrow{\text{PS or NaH}}$$

1a
6-Ph-*arachno*-6,8,9-PC₂B₇H₁₀⁻ (10)

1a

Since 1a has two potentially acidic hydrogens, a bridgehydrogen spanning B5-B10 and an endo-hydrogen at C9, mono-deprotonation could in principle yield analogues of either of the structures, $\mathbf{Ib_1}^-$ or $\mathbf{Ib_2}^-$, shown in Figure 14a and 14b. DFT calculations showed that structure Ib_1^- , in which the bridge-hydrogen at B5-B10 was removed, is 7.6 kcal/mol more favored than the *endo*-C9 deprotonated structure Ib_2^- , and indeed, the DFT/GIAO calculated chemical shifts for Ib1showed better agreement with the experimental data for 1a⁻ than those calculated for structure \mathbf{Ib}_2^- (Table 1). A comparison of the calculated bond distances and angles for Ib₁⁻ with those found for the neutral compound Ib reveals that the major structural change that occurs upon deprotonation of the B5-B10 bridge-hydrogen is a significant shortening of B5-B10 to 1.720 Å and an elongation of B2-C9 to 1.806 Å compared to their values in **Ib** (B5–B10, 1.872 Å; B2–C9, 1.738 Å).

The 6-Ph-*arachno*-6,8,9-PC₂B₇H₉²⁻ ($1a^{2-}$) dianion was prepared by reaction with the stronger base MeLi in DME solution (eq 11).

6-Ph-arachno-6,8,9-PC₂B₇H₁₁ $\xrightarrow{2 \text{ equiv of MeLi}}$

1a

6-Ph-*arachno*-6,8,9-PC₂B₇H₉²⁻ (11)
$$1a^{2-}$$

The DFT/GIAO calculated chemical shifts for structure Ib^{2-} shown in Figure 14c, in which both the B5–B10 and *endo*-C9 hydrogens have been removed, showed good agreement with

 ^{(35) (}a) Hirsivaara, L.; Haukka, M.; Pursiainen, J. *Eur. J. Inorg. Chem.* 2001, 9, 2255–2262. (b) Yang, F.; Fanwick, P. E.; Kubiak, C. P. *Inorg. Chem.* 2002, 41, 4805–4809.

⁽³⁶⁾ Coalter, N. L.; Concolino, T. E.; Streib, W. E.; Hughes, C. G.; Rheingold, A. L.; Zaleski, J. M. J. Am. Chem. Soc. 2000, 122, 3112–3117.

Figure 14. DFT optimized geometries (B3LYP/6-311G*//B3LYP/6-311G*) of two possible monoanions of 6-R-*arachno*-6,8,9-PC₂B₇H₁₀⁻ (**Ib**₁⁻, **Ib**₂⁻) and a dianion 6-R-*arachno*-6,8,9-PC₂B₇H₁₀² (**Ib**²⁻). Selected bond distances (Å) and angles (deg) for **Ib**₁⁻ and **Ib**²⁻. **Ib**₁⁻: B5-P6, 1.998; P6-B7, 1.984; B7-C8, 1.606; C8-C9, 1.570; C9-B10, 1.733; B10-B5, 1.720; P6-B4, 2.092; B2-C9, 1.806; P6-C11, 1.888; B4-P6-C11, 93.2; C8-C9-B10, 107.5, B5-P6-B7, 94.3. **I**²⁻: B5-P6, 2.005; P6-B7, 2.001; B7-C8, 1.605; C8-C9, 1.498; C9-B10, 1.575; B10-B5, 1.742; P6-B4, 2.297; B2-C9, 1.608; P6-C11, 1.931; B4-P6-C11, 86.8; C8-C9-B10, 114.8; B5-P6-B7, 89.0.

the ¹¹B NMR spectrum of $1a^{2-}$ (Table 1). An examination of the dianion structure reveals several significant cage structural changes compared to either **Ib** or **Ib**₁⁻. Most notably, in the dianion, the deprotonation of the *endo*-C9–H has greatly increased the bonding interactions of the C9 carbon with its neighboring cage atoms, with the C8–C9 (1.498 Å), C9–B10 (1.575 Å), and C9–B2 (1.608 Å) distances all being dramatically shortened compared to their values in either **Ib** (1.577, 1.774, and 1.738 Å, respectively) or **Ib**₁⁻ (1.570, 1.733, and 1.806 Å, respectively).

Coordination Chemistry of the 6-Ph-*arachno*-6,8,9-PC₂B₇H₉²⁻ (1a²⁻) **Anion.** The reaction of the 6-Ph-*arachno*-6,8,9-PC₂B₇H₉²⁻ (1a²⁻) anion with $(Ph_3P)_2PtCl_2$ gave 8-Ph-7- $(Ph_3P)_2$ -*nido*-7,8,10,11-PtPC₂B₇H₉ (9, eq 12).

Li₂⁺[6-Ph-*arachno*-6,8,9-PC₂B₇H₉²⁻] + (Ph₃P)₂PtCl₂ →

$$1a^{2^{-}}$$

8-Ph-7-(Ph₃P)₂-*nido*-7,8,10,11-PtPC₂B₇H₉ + 2 LiCl (12)

Likewise, the reaction (eq 13) of 6-Ph-*arachno*-6,8,9- $PC_2B_7H_{11}$ (1a) with $CpCo(CO)_2$ at 70 °C resulted in the oxidative insertion³⁷ of the cobalt into the cage to produce the

7-Ph-11-(η^{5} -C₅H₅)-*nido*-11,7,9,10-CoPC₂B₇H₉ (**10**) complex in which a Co³⁺ ion is sandwiched between formal η^{5} -C₅H₅⁻ and η^{4} -6,8,9-PC₂B₇H₉²⁻ (**1a**²⁻) anions.

6-Ph-*arachno*-6,8,9-PC₂B₇H₁₁ + CpCo(CO)₂
$$\xrightarrow{-2 \text{ CO, H}_2}$$

1a
7-Ph-11-Cp-*nido*-11,7,9,10-CoPC₂B₇H₉ (13)
10

In agreement with their predicted 26 skeletal electron counts,¹⁹ single-crystal X-ray diffraction studies of 9 and 10 established the 11-vertex nido-cluster structures shown in Figures 15 and 16. The phosphadicarbaboranyl ligands are each coordinated to the metals in an η^4 -fashion. In both complexes, the heteroatoms occupy low connectivity sites on the five-membered open face of the cluster with the Pt in 9 and the Co in 10 being slightly distorted above the plane of the other four facial atoms. Similar η^4 -coordination was observed for the isoelectronic phosphamonocarbaborane 6-Ph-arachno-PCB₈H₁₀²⁻ anion in the Pt²⁺ complex 7-Ph-11-(Ph₃P)₂-nido-11,7,8-PtPCB₈H₁₀,^{2b} and in both this complex and 9, the dihedral angle between the fivemembered open face and the P18-Pt11-P37 plane is $\sim 73^{\circ}$. In contrast to 7 where the P6a-Pt-P6b angle is $95.61(7)^{\circ}$, in 9 the P18-Pt-P37 angle has increased to 101.46(5)° consistent with the expected change in platinum hybridization upon insertion. The Pt-P bond length in 9 (2.4208(14)Å) is also longer than those observed in 7 (2.254(2) and 2.268(2)Å).

Consistent with the crystallographically established structures, the ¹¹B NMR spectra of **9** and **10** each showed seven resonances, their ¹³C NMR spectrum each exhibited two cage-carbon resonances, and their ¹H NMR spectra showed the appropriate BH and CH resonances. The ³¹P NMR spectrum of **9** showed three resonances, each of which were coupled to ¹⁹⁵Pt (J_{Pt-P} , 3596, 4218, 4236 Hz). The phosphorus resonances of the two Ph₃P groups showed additional doublet structure (J_{PP} , 17, 18 Hz) arising from coupling to the cage phosphorus, and accordingly, although not clearly resolved, the cage phosphorus resonance showed the corresponding triplet fine-structure from coupling to the two Ph₃P phosphorus atoms.

The reaction (eq 14) of 2 equiv of the 6-Ph-*arachno*-6,8,9-PC₂B₇H₁₀⁻ (**1a**⁻) anion with NiBr₂ followed by an oxidative workup produced *commo*-Ni-(7-Ni-8'-Ph-*nido*-8',10',11'-PC₂B₇H₉)(7-Ni-8-Ph-*nido*-8,10,11-PC₂B₇H₉) (**11**).

$$2 \text{ Li}^{+}[6-\text{Ph}-arachno-6,8,9-\text{PC}_{2}\text{B}_{7}\text{H}_{10}^{-}] + \text{NiBr}_{2} \frac{(1)-2 \text{ LiBr}}{(2) \text{ O}_{2}, -\text{H}_{2}\text{O}} \\ 1a^{-} \\ commo-\text{Ni}-(7-\text{Ni}-8'-\text{Ph}-nido-8',10',11'-\text{PC}_{2}\text{B}_{7}\text{H}_{9}) - \\ (7-\text{Ni}-8'-\text{Ph}-nido-8',10',11'-\text{PC}_{2}\text{B}_{7}\text{H}_{9}) - \\ (14)$$

Owing to the C_1 symmetries of the 6-Ph-*arachno*-6,8,9-PC₂B₇H₁₀⁻ (**1a**⁻) and 6-Ph-*arachno*-6,8,9-PC₂B₇H₉²⁻ (**1a**²⁻) anions, they are each synthesized as racemic mixtures. Thus, when a bis-cage complex, such as **11**, is formed from one of these anions, it could result from reaction with 2 equiv of the same enantiomer (R-M-R or S-M-S complexes) or from reaction with the two different enantiomeric forms of the anion (R-M-S).³⁸ The single-crystal X-ray diffraction study of **11** (Figure 17) established that two phosphadicarbaboranyl ligands

^{(37) (}a) Miller, V. R.; Sneddon, L. G.; Beer, D. C.; Grimes, R. N. J. Am. Chem. Soc. 1974, 96, 3090–3098. (b) Maxwell, W. M.; Grimes, R. N. Inorg. Chem. 1979, 18, 2174–2178. (c) Grimes, R. N. In Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon: New York, 1982; Vol. 1, Chapter 5.5.

Figure 15. ORTEP drawing of 8-Ph-7-(Ph₃P)₂-*nido*-7,8,10,11-PtPC₂B₇H₉ (9). Selected bond distances (Å) and angles (deg): Pt7–P8, 2.4208(14); Pt7–B2, 2.273(6); Pt7–B6, 2.210(5); Pt7–C11, 2.176(5); P8–B9, 1.928(7); B9–C10, 1.639(11); C10–C11, 1.522(8); Pt7–P37, 2.3164(15); Pt7–P18, 2.3061(16); P8–Pt7–P18, 108.61(5); P8–Pt7–P37, 118.25(5); P18–Pt7–P37, 101.46(5); C11–Pt7–P37, 151.68(15); C11–Pt7–P18, 88.46(17).

Figure 16. ORTEP drawing of 7-Ph-11- $(\eta^5-C_5H_5)$ -*nido*-11,7,9,10-CoPC₂B₇H₉ (10). Selected bond distances (Å) and angles (deg): P7–B8, 1.899(3); B8– C9, 1.632(4); C9–C10, 1.527(3); Co11–P7, 2.1378(7); Co11–C10, 2.003(2); Co11–B5, 2.059(3); Co11–B6, 2.140(3); P7–C12, 1.802(2); C12–P7–B2, 107.05(12); C12–P7–Co11, 127.86(8); Co11–P7–B8, 111.22(11); P7–B8–C9, 103.34(19); B8–C9–C10, 117.9(2); C9–C10– Co11, 120.67(17); C10–Co11–P7, 86.26(8).

of the same enantiomeric type (both *R*-M-*R* and *S*-M-*S* complexes being present in the $P2_1/c$ unit cell) are η^4 -coordinated to the nickel center. The nickel center occupies a four-coordinate vertex in each cage, with both cages adopting 11-vertex *nido*-structures similar to those found for **9** and **10**.

Figure 17. ORTEP drawing of *commo*-Ni-(7-Ni-8'-Ph-*nido*-8',10',11'-PC₂B₇H₉)(7-Ni-8-Ph-*nido*-8,10,11-PC₂B₇H₉) (**11**). Selected bond distances (Å) and angles (deg): Ni7–P8, 2.1837(6); Ni7–C11, 2.055(2); Ni7–B2, 2.165(3); Ni7–B6; 2.117(3); P8–B9, 1.895(3); B9–C10, 1.652(4); C10–C11, 1.501(3); P8–B2, 2.008(3); P8–C12, 1.792(3); Ni7–P8', 2.1692(6); Ni7–C11', 2.061(2); Ni7–B2', 2.169(3); Ni7–B6', 2.120(3); P8'–B9', 1.899(3); B9'–C10', 1.654(4); C10'–C11', 1.518(3); P8'–B2', 1.995(3); P8–Ni7–P8', 92.13(2); P8–Ni7–C11', 102.45(7); P8'–Ni7–C11, 97.37(7); C11–Ni7–P8, 88.35(7); Ni7–P8–B9, 107.41(10); P8–B9–C10, 106.2(2); B9–C10–C11, 119.0(2); C10–C11–Ni7, 117.54(17); C11'–Ni7–P8', 89.16(7); Ni7–P8'–B9', 107.53(9); P8'–B9'–C10', 106.03(18); B9'–C10'–C11', 119.5(2); C10'–C11'–Ni7, 116.16(16); Ni7–P8'–C12', 124.94(8).

In both cages, all of the heteroatoms are present on the open pentagonal face and the two cages are twisted $64.9(1)^{\circ}$ (as measured by the dihedral angle between the B1'-B4'-Ni7 and B1-B4-Ni7 planes) with a 84.00(5)° angle between the planes of the two open pentagonal faces. Since **11** has two anions of

⁽³⁸⁾ A modification of the R and S notation for configuration specification is utilized here. Observation of the phosphadicarbaborane cage from the open face is thus prioritized from the phosphorus, where the configuration is specified R, for a clockwise direction, or S, for the counterclockwise configuration.

the same enantiomeric type, these cages are related by a noncrystallographic C_2 axis passing through the nickel ion, and all of the NMR spectral data for **11** likewise indicate that the two cages are equivalent. TLC, mass spectroscopy, and NMR analysis of the reaction mixture also indicated the production of another isomeric complex. This complex could not be isolated in sufficient purity to allow complete characterization; however, its more complex NMR spectra suggest that it is most likely the R-M-S complex.

Since complex **11** contains two 6-Ph-*arachno*-6,8,9-PC₂B₇H₉²⁻ (**1a**²⁻) dianion ligands, the nickel has a formal oxidation state of Ni⁴⁺. Thus the **1a**²⁻ dianion appears to have an ability, similar to that of the dicarbabollide C₂B₉H₁₁²⁻ dianions in *closo*-Ni-(C₂B₉H₁₁)₂,³⁹ to stabilize high oxidation states. The Ni–C11 and Ni–C11' (2.055(2) and 2.061(2) Å) and the Ni7–B2, Ni7–B2', Ni7–B6, and Ni7–B6' distances (2.165(3), 2.169(3), 2.117(3), and 2.120(3) Å) in **11** are reasonably similar to the Ni–C (2.077(2), 2.065(2), 2.072(2), and 2.071(2) Å) and Ni–B distances (2.105(2), 2.086(2), and 2.120(2) Å) in *closo*-Ni-(C₂B₉H₁₁)₂.⁴⁰

In conclusion, these studies have resulted in the syntheses and structural characterizations of two isomers of the first 10vertex phosphadicarbaboranes. While DFT calculations showed that the HOMO orbitals of both isomers have large components at their *endo*-P6 positions, the isomers exhibit very different chemistries, with only the 6-R-*arachno*-6,5,7-PC₂B₇H₁₁ (2) isomer showing strong donor properties, forming endo-L-exo-6-R-arachno-6,5,7-PC₂B₇H₁₁ (L = BH₃ (3), S (4), O (5), Pt (7), and Pd (8)) complexes containing Lewis acidic substituents bonded at the endo-position of the P6-phosphorus. These donor properties are similar to those recently reported for the isoelectronic 6-R-arachno-6,7-PCB₈H₁₁⁻ phosphamonocarbaborane anion.² Thus 6-R-arachno-6,7-PCB₈H₁₁⁻ and 2 can be considered anionic and neutral phosphacarbaborane analogues, respectively, of an R₃P donor. The differences in Lewis basicities found for 2 and 6-R-arachno-6,8,9-PC₂B₇H₁₁ (1) is most likely a consequence of the fact that the phosphorus in 1 is directly bonded to three electron-poor borons and can readily delocalize electron density to these atoms, whereas in 2 the phosphorus is adjacent to two electron-donating carbons that enhance the phosphorus donor properties. While neutral 1 does not coordinate with transition metals, its dianion readily coordinates to transition metals in an η^4 -fashion and appears to have an ability, like the dicarbollide dianion, to stabilize metals in high oxidation states.

Acknowledgment. We thank the National Science Foundation for the support of this research.

Supporting Information Available: Tables listing Cartesian coordinates for DFT optimized geometries. X-ray crystallographic data for structure determinations of compounds **1a**, **2a**, **7**, **8**, **9**, **10**, and **11** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA037799+

⁽³⁹⁾ Warren, L. F., Jr.; Hawthorne, M. F. J. Am. Chem. Soc. 1970, 92, 1157– 1173.

⁽⁴⁰⁾ St. Clair, D.; Zalkin, A.; Templeton, D. H. J. Am. Chem. Soc. 1970, 92, 1173–1179.